Redox Reactions

DR. MIOY T. HUYNH YALE UNIVERSITY CHEMISTRY 161 FALL 2019

www.mioy.org/chem161

What is an oxidation state?

The oxidation state is a hypothetical charge of an element <u>IF</u> it were 100% ionic.

Take-home message: Treat oxidation number/state like a charge.

Some general rules:

- 1. Pure elements have oxidation number = 0
- 2. Hydrogen usually has an oxidation number = +1
- 3. Oxygen usually has an oxidation number = -1
- 4. Everything else: follow the rules for ionic charges!

Ex) Br₂: each Br is 0 Ex) Mg: Mg is 0 Ex) H₂O; CH₄ Ex) H₂O; CO₂ Ex) NaCl: Na = +1; Cl = -1Ex) CF₄: C = +4; F = -1Ex) CO₂: C = +4; O = -2

Some reactions involve a change in the oxidation state of an atom/element!

A reaction in which the oxidation states of some elements change.

There are two types:

- 1. Reduction: Gain of an electron; becomes more negatively charged
- 2. Oxidation: Loss of an electron; becomes less negatively charged

A reaction in which the oxidation states of some elements change.

There are two types:

- 1. Reduction: Gain of an electron; becomes more negatively charged
- 2. Oxidation: Loss of an electron; becomes less negatively charged

LEO = Lose Electron Oxidation

says

GER = Gain Electron Reduction

A reaction in which the oxidation states of some elements change.

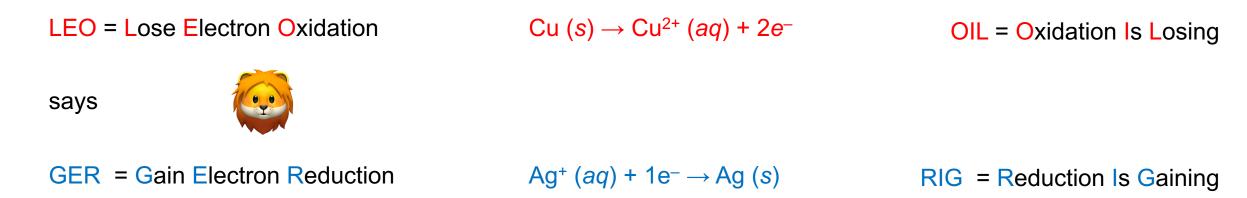
There are two types:

- 1. Reduction: Gain of an electron; becomes more negatively charged
- 2. Oxidation: Loss of an electron; becomes less negatively charged

LEO = Lose Electron Oxidation

 $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$

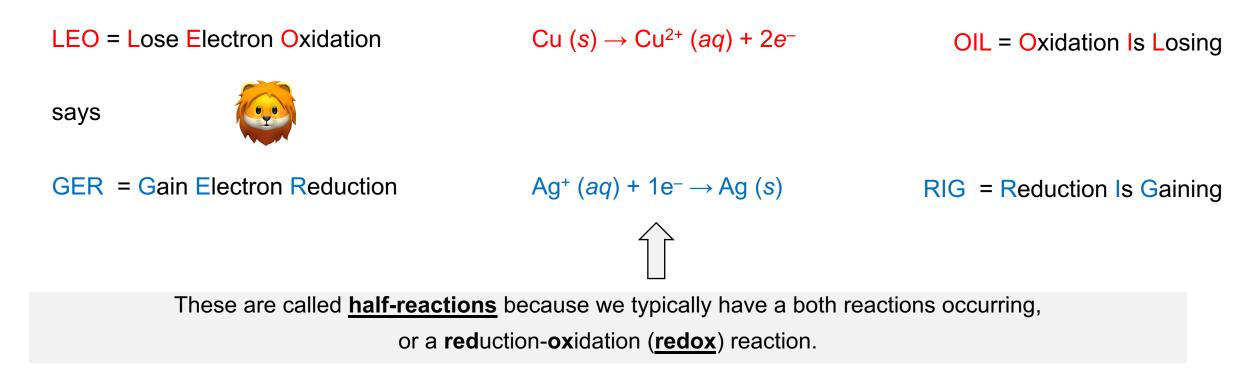
says


GER = Gain Electron Reduction

 $Ag^+(aq) + 1e^- \rightarrow Ag(s)$

A reaction in which the oxidation states of some elements change.

There are two types:


- 1. Reduction: Gain of an electron; becomes more negatively charged
- 2. Oxidation: Loss of an electron; becomes less negatively charged

A reaction in which the oxidation states of some elements change.

There are two types:

- 1. Reduction: Gain of an electron; becomes more negatively charged
- 2. Oxidation: Loss of an electron; becomes less negatively charged

 $Fe^{2+}(aq) + MnO_4^-(aq) \rightarrow Fe^{3+}(aq) + Mn^{2+}(aq)$

 $Fe^{2+}(aq) + MnO_4^-(aq) \rightarrow Fe^{3+}(aq) + Mn^{2+}(aq)$

0. Assign the oxidation states of each element.

 $Fe^{2+}(aq) + MnO_4^-(aq) \rightarrow Fe^{3+}(aq) + Mn^{2+}(aq)$

0. Assign the oxidation states of each element.

 $Fe^{2+} = +2$ Mn in MnO_4^{-1} : +7O in MnO_4^{-1} : -2 $Fe^{3+} = +3$ Mn^{2+}: +2

 $Fe^{2+}(aq) + MnO_4^-(aq) \rightarrow Fe^{3+}(aq) + Mn^{2+}(aq)$

0. Assign the oxidation states of each element.

1. Separate into half-reactions.

 $Fe^{2+} = +2$ Mn in MnO_4^{-1} : +7O in MnO_4^{-1} : -2 $Fe^{3+} = +3$ Mn^{2+}: +2

Ox	1 Fe ²⁺ (aq) \rightarrow 1 Fe ³⁺ (aq)
Red	1 MnO ₄ ⁻ (aq) \rightarrow 1 Mn ²⁺ (aq)

$$Fe^{2+}(aq) + MnO_4^-(aq) \rightarrow Fe^{3+}(aq) + Mn^{2+}(aq)$$

 $Fe^{2+} = +2$ Mn in MnO₄-: +7 O in MnO₄-: -2

 $Fe^{3+} = +3$ $Mn^{2+}: +2$

- 0. Assign the oxidation states of each element.
- 1. Separate into half-reactions.
- 2. Balance atoms (except O and H): *already balanced*

Ox1 $Fe^{2+}(aq) \rightarrow 1$ $Fe^{3+}(aq)$ Red1 $MnO_4^-(aq) \rightarrow 1$ $Mn^{2+}(aq)$

$$Fe^{2+}(aq) + MnO_4^-(aq) \rightarrow Fe^{3+}(aq) + Mn^{2+}(aq)$$

- 0. Assign the oxidation states of each element.
- 1. Separate into half-reactions.
- 2. Balance atoms (except O and H): *already balanced*
- 3. Balance O atoms with H_2O on opposite side.

Fe²⁺ = +2 Mn in MnO₄⁻: +7 O in MnO₄⁻: -2 Fe³⁺ = +3 Mn²⁺: +2

Ox1 $\operatorname{Fe}^{2+}(aq) \rightarrow 1 \operatorname{Fe}^{3+}(aq)$ Red1 $\operatorname{MnO}_4^-(aq) \rightarrow 1 \operatorname{Mn}^{2+}(aq) + 4 \operatorname{H}_2O(l)$

How do I balance redox reactions?

$$Fe^{2+}(aq) + MnO_4^-(aq) \rightarrow Fe^{3+}(aq) + Mn^{2+}(aq)$$

- 0. Assign the oxidation states of each element.
- 1. Separate into half-reactions.

Overall

- 2. Balance atoms (except O and H): *already balanced*
- 3. Balance O atoms with H_2O on opposite side.
- 4. Balance H atoms with H^+ on opposite side.

Ox1 $Fe^{2+}(aq) \rightarrow 1$ $Fe^{3+}(aq)$ Red8 $H^+(aq)$ +1 $MnO_4^-(aq) \rightarrow 1$ $Mn^{2+}(aq) + 4$ $H_2O(I)$

Fe²⁺ = +2 Mn in MnO₄⁻: +7 O in MnO₄⁻: -2 Fe³⁺ = +3 Mn²⁺: +2

How do I balance redox reactions?

$$Fe^{2+}(aq) + MnO_4^-(aq) \rightarrow Fe^{3+}(aq) + Mn^{2+}(aq)$$

- 0. Assign the oxidation states of each element.
- 1. Separate into half-reactions.

Overall

- 2. Balance atoms (except O and H): already balanced
- 3. Balance O atoms with H_2O on opposite side.
- 4. Balance H atoms with H⁺ on opposite side.
- 5. Balance *total charge* with electrons (*e*–).

 Ox
 1
 $Fe^{2+}(aq) \rightarrow 1$ $Fe^{3+}(aq)$

 Red
 8
 $H^+(aq)$ +
 1
 $MnO_4^-(aq) \rightarrow 1$ $Mn^{2+}(aq)$ +
 4
 $H_2O(l)$

Fe²⁺ = +2 Mn in MnO₄⁻: +7 O in MnO₄⁻: -2 Fe³⁺ = +3 Mn²⁺: +2

How do I balance redox reactions?

 $Fe^{2+}(aq) + MnO_4^-(aq) \rightarrow Fe^{3+}(aq) + Mn^{2+}(aq)$

- 0. Assign the oxidation states of each element.
- 1. Separate into half-reactions.
- 2. Balance atoms (except O and H): already balanced
- 3. Balance O atoms with H_2O on opposite side.
- 4. Balance H atoms with H⁺ on opposite side.
- 5. Balance *total charge* with electrons (*e*–).

Fe²⁺ = +2 Mn in MnO₄⁻: +7 O in MnO₄⁻: -2 Fe³⁺ = +3 Mn²⁺: +2

For the oxidation reaction: the reactants have a total charge of 2+ and the products have a total charge of 3+, so we need 1 extra electron on the product side.

Ox			1 Fe ²⁺ (<i>aq</i>)	\rightarrow	1	Fe ³⁺ (<i>aq</i>)	+	1	<i>e</i> -
Red	8 H⁺ (<i>aq</i>)	+	1 MnO ₄ - (<i>aq</i>)	\rightarrow	1	Mn ²⁺ (<i>aq</i>)	+	4	H ₂ O (/)

How do I balance redox reactions?

 $Fe^{2+}(aq) + MnO_4^-(aq) \rightarrow Fe^{3+}(aq) + Mn^{2+}(aq)$

- 0. Assign the oxidation states of each element.
- 1. Separate into half-reactions.
- 2. Balance atoms (except O and H): already balanced
- 3. Balance O atoms with H_2O on opposite side.
- 4. Balance H atoms with H⁺ on opposite side.
- 5. Balance *total charge* with electrons (*e*–).

Fe²⁺ = +2 Mn in MnO₄⁻: +7 O in MnO₄⁻: -2 Fe³⁺ = +3 Mn²⁺: +2

For the reduction reaction: the reactants have a total charge of 7+ and the products have a total charge of 2+, so we need 5 extra electron on the reactants side.

Ox1 $Fe^{2+}(aq) \rightarrow 1$ $Fe^{3+}(aq) + 1$ e^{-} Red5 e^{-} +8 $H^{+}(aq)$ +1 $MnO_{4^{-}}(aq) \rightarrow 1$ $Mn^{2+}(aq) + 4$ $H_{2}O(I)$

How do I balance redox reactions?

$$\mathrm{Fe^{2+}}(aq) + \mathrm{MnO_4^{-}}(aq) \rightarrow \mathrm{Fe^{3+}}(aq) + \mathrm{Mn^{2+}}(aq)$$

- 0. Assign the oxidation states of each element.
- 1. Separate into half-reactions.
- 2. Balance atoms (except O and H): already balanced
- 3. Balance O atoms with H_2O on opposite side.
- 4. Balance H atoms with H⁺ on opposite side.
- 5. Balance *total charge* with electrons (*e*–).

Ox1 $Fe^{2+}(aq) \rightarrow 1$ $Fe^{3+}(aq) + 1$ e^{-} Red5 e^{-} +8 $H^{+}(aq)$ +1 $MnO_{4}^{-}(aq) \rightarrow 1$ $Mn^{2+}(aq) + 4$ $H_2O(l)$

Fe²⁺ = +2 Mn in MnO₄⁻: +7 O in MnO₄⁻: -2 Fe³⁺ = +3 Mn²⁺: +2

How do I balance redox reactions?

 $Fe^{2+}(aq) + MnO_4^-(aq) \rightarrow Fe^{3+}(aq) + Mn^{2+}(aq)$

- 0. Assign the oxidation states of each element.
- 1. Separate into half-reactions.
- 2. Balance atoms (except O and H): already balanced
- 3. Balance O atoms with H_2O on opposite side.
- 4. Balance H atoms with H⁺ on opposite side.
- 5. Balance *total charge* with electrons (*e*–).
- 6. Balance the electrons by multiplying entire half-reactions.

Fe²⁺ = +2 Mn in MnO₄-: +7 O in MnO₄-: -2 Fe³⁺ = +3 Mn²⁺: +2

How do I balance redox reactions?

$$\mathrm{Fe^{2+}}(aq) + \mathrm{MnO_4^{-}}(aq) \rightarrow \mathrm{Fe^{3+}}(aq) + \mathrm{Mn^{2+}}(aq)$$

- 0. Assign the oxidation states of each element.
- 1. Separate into half-reactions.
- 2. Balance atoms (except O and H): already balanced
- 3. Balance O atoms with H_2O on opposite side.
- 4. Balance H atoms with H^+ on opposite side.
- 5. Balance total charge with electrons (e-).
- 6. Balance the electrons by multiplying entire half-reactions.

Fe²⁺ = +2 Mn in MnO₄⁻: +7 O in MnO₄⁻: -2 Fe³⁺ = +3 Mn²⁺: +2

How do I balance redox reactions?

$$Fe^{2+}(aq) + MnO_4^-(aq) \rightarrow Fe^{3+}(aq) + Mn^{2+}(aq)$$

- 0. Assign the oxidation states of each element.
- 1. Separate into half-reactions.
- 2. Balance atoms (except O and H): already balanced
- 3. Balance O atoms with H_2O on opposite side.
- 4. Balance H atoms with H⁺ on opposite side.
- 5. Balance *total charge* with electrons (*e*–).
- 6. Balance the electrons by multiplying entire half-reactions.
- 7. Add the two half-reactions together. (Make sure overall equation is balanced and no extra electrons).

Ox
 5

$$Fe^{2+}(aq) \rightarrow 5$$
 $Fe^{3+}(aq) + 5e^{-1}$

 Red
 5
 e^{-}
 + 8
 $H^+(aq)$
 + 1
 $MnO_4^-(aq) \rightarrow 1$
 $Mn^{2+}(aq) + 4$
 $H_2O(l)$

 Overall
 P_1
 P_2
 P_2
 P_2
 P_2
 P_2

Fe²⁺ = +2 Mn in MnO₄⁻: +7 O in MnO₄⁻: -2 Fe³⁺ = +3 Mn²⁺: +2

How do I balance redox reactions?

$$Fe^{2+}(aq) + MnO_4^-(aq) \rightarrow Fe^{3+}(aq) + Mn^{2+}(aq)$$

- 0. Assign the oxidation states of each element.
- 1. Separate into half-reactions.
- 2. Balance atoms (except O and H): already balanced
- 3. Balance O atoms with H_2O on opposite side.
- 4. Balance H atoms with H⁺ on opposite side.
- 5. Balance *total charge* with electrons (*e*–).
- 6. Balance the electrons by multiplying entire half-reactions.
- 7. Add the two half-reactions together. (Make sure overall equation is balanced and no extra electrons).

Ox
 5

$$Fe^{2+}(aq)$$
 \rightarrow
 5
 $Fe^{3+}(aq)$
 +
 5
 e^{-}

 Red
 5
 e^{-}
 +
 8
 $H^+(aq)$
 +
 1
 $MnO_4^-(aq)$
 \rightarrow
 1
 $Mn^{2+}(aq)$
 +
 4
 $H_2O(l)$

 Overall
 8
 $H^+(aq)$
 +
 1
 $MnO_4^-(aq)$
 \rightarrow
 5
 $Fe^{3+}(aq)$
 +
 1
 $Mn^{2+}(aq)$
 +
 4
 $H_2O(l)$

Fe²⁺ = +2 Mn in MnO₄⁻: +7 O in MnO₄⁻: -2 Fe³⁺ = +3 Mn²⁺: +2