Salts & Solubility

DR. MIOY T. HUYNH YALE UNIVERSITY CHEMISTRY 161 FALL 2018

www.mioy.org/chem161

What is a salt?

A salt is an ionic compound: metal + nonmetal

Some salts are **soluble** in water (*aqueous*, *aq* = dissolves in water). Some salts are **insoluble** in water (precipitate, solid, *s*).

MEMORIZE THIS CHART:

You should be able to quickly identify the ions that comprise a salt!

		Exceptions
SOLUBLE	Group 1 cations	
	NH_4^+	
	NO ₃ -	
OLI	CH₃COO [_]	
တျ	Cl⁻, Br⁻, l⁻	Ag ⁺ , Hg ₂ ²⁺ , Pb ²⁺ , Cu ⁺
	SO4 ²⁻	Hg ₂ ²⁺ , Pb ²⁺ , Ba ²⁺ , Ca ²⁺ , Sr ²⁺ ,
NSOLUBLE	OH⁻	Group 1 cations, Ba ²⁺ , Ca ²⁺ , Sr ²⁺ , NH ₄ ⁺
	S ^{2–}	Group 1 cations, Ba ²⁺ , Ca ²⁺ , Sr ²⁺ , NH ₄ ⁺
	CO ₃ ^{2–} , PO ₄ ^{3–} , F [–]	Group 1 cations, NH ₄ ⁺

Determine if each of the following salts are soluble or insoluble.

1. KNO ₃ :			
2. PbSO ₄ :			
3. KOH :			Executions
4. MgSO ₄ :		Group 1 cations	Exceptions
5. FePO ₄ :			
6. Pb(NO ₃) ₂ :	Щ	NH_4^+	
7. $Pb(SO_4)_2$:	UBI	NO_3^-	
8. FeCl ₂ :	SOLUBLE	CH ₃ COO ⁻	
9. ZnS :	ဖျ	Cl⁻, Br⁻, l⁻	Ag ⁺ , Hg ₂ ²⁺ , Pb ²⁺ , Cu ⁺
$10.Cd(OH)_2$:		SO ₄ ^{2–}	Hg ₂ ²⁺ , Pb ²⁺ , Ba ²⁺ , Ca ²⁺ , Sr ²⁺ ,
11. MgCO ₃ :	SLE	OH⁻	Group 1 cations, Ba ²⁺ , Ca ²⁺ , Sr ²⁺ , NH ₄ ⁺
12.NH ₄ CI :	INSOLUBLE	S ^{2–}	Group 1 cations, Ba ²⁺ , Ca ²⁺ , Sr ²⁺ , NH ₄ ⁺
13.CaBr ₂ :	NSO	CO ₃ ^{2–} , PO ₄ ^{3–} , F [–]	Group 1 cations, NH ₄ ⁺
14.Hg ₂ I :			
45.0.000			

 $15. CuCH_3COO$:

Determine if each of the following salts are soluble or insoluble.

- 1. KNO₃: soluble
- 2. $PbSO_4$: insoluble
- 3. KOH : soluble
- 4. $MgSO_4$: soluble
- 5. $FePO_4$: insoluble
- 6. $Pb(NO_3)_2$: soluble
- 7. $Pb(SO_4)_2$: soluble
- 8. $FeCl_2$: soluble
- 9. ZnS : *insoluble*

10. Cd(OH)₂ : insoluble

- 11. MgCO₃ : insoluble
- 12.NH₄CI : soluble

13. CaBr₂ : soluble

14. Hg₂I : *insoluble*

15. CuCH₃COO : *soluble*

		Exceptions
	Group 1 cations	
ш	NH_4^+	
JBL	NO_3^-	
SOLUBLE	CH₃COO⁻	
Ю	Cl⁻, Br⁻, l⁻	Ag ⁺ , Hg ₂ ²⁺ , Pb ²⁺ , Cu ⁺
	SO4 ²⁻	Hg ₂ ²⁺ , Pb ²⁺ , Ba ²⁺ , Ca ²⁺ , Sr ²⁺ ,
<u>SLE</u>	OH⁻	Group 1 cations, Ba ²⁺ , Ca ²⁺ , Sr ²⁺ , NH ₄ ⁺
INSOLUBLE	S ^{2–}	Group 1 cations, Ba ²⁺ , Ca ²⁺ , Sr ²⁺ , NH ₄ ⁺
	CO ₃ ^{2–} , PO ₄ ^{3–} , F [–]	Group 1 cations, NH ₄ ⁺

Determine if each of the following salts are soluble or insoluble.

- 1. Nickel (II) Hydroxide :
- 2. Sodium Chloride :
- 3. Barium Nitrate :
- 4. Ammonium Bromide :
- 5. Magnesium Hydroxide :
- 6. Barium Sulfate :
- 7. Barium Hydroxide :
- 8. Lanthanum Nitrate :
- 9. Sodium Acetate :
- 10. Lead(II) Hydroxide :
- 11.Lead(IV) Sulfate :
- 12. Calcium Phosphate :
- 13. Iron(II) Sulfide :
- 14. Lithium Fluoride :
- 15. Aluminum Carbonate :

		Exceptions
	Group 1 cations	
ш	NH_4^+	
JBL	NO ₃ ⁻	
SOLUBLE	CH ₃ COO ⁻	
ןנט	Cl⁻, Br⁻, l⁻	Ag ⁺ , Hg ₂ ²⁺ , Pb ²⁺ , Cu ⁺
	SO4 ²⁻	Hg ₂ ²⁺ , Pb ²⁺ , Ba ²⁺ , Ca ²⁺ , Sr ²⁺ ,
<u>SLE</u>	OH⁻	Group 1 cations, Ba ²⁺ , Ca ²⁺ , Sr ²⁺ , NH ₄ ⁺
LUE	S ^{2–}	Group 1 cations, Ba ²⁺ , Ca ²⁺ , Sr ²⁺ , NH ₄ ⁺
INSOLUBLE	CO3 ^{2–} , PO4 ^{3–} , F [–]	Group 1 cations, NH ₄ ⁺

Determine if each of the following salts are soluble or insoluble.

- 1. Nickel (II) Hydroxide : insoluble
- 2. Sodium Chloride : soluble
- 3. Barium Nitrate : soluble
- 4. Ammonium Bromide : soluble
- 5. Magnesium Hydroxide : *insoluble*
- 6. Barium Sulfate : insoluble
- 7. Barium Hydroxide : soluble
- 8. Lanthanum Nitrate : soluble
- 9. Sodium Acetate : soluble
- 10. Lead(II) Hydroxide : insoluble
- 11.Lead(IV) Sulfate : *soluble*
- 12. Calcium Phosphate : insoluble
- 13. Iron(II) Sulfide : insoluble
- 14. Lithium Fluoride : soluble
- 15. Aluminum Carbonate : insoluble

Exceptions	
Group 1 cations	
шI NH4 ⁺	
BTRA NO ₃ - CH ₃ COO-	
Cl⁻, Br⁻, l⁻ Ag⁺, Hg ₂ ²⁺ , Pb ²⁺ , Cu⁺	
SO ₄ ^{2–} Hg ₂ ²⁺ , Pb ²⁺ , Ba ²⁺ , Ca ²⁺ , Si	r ²⁺ ,
Group 1 cations, Ba ²⁺ , Ca ²⁺ , Sr	⁻²⁺ , NH ₄ ⁺
S ^{2–} Group 1 cations, Ba ²⁺ , Ca ²⁺ , Sr	²⁺ , NH ₄ ⁺
Harmonic Propulsion OH-Group 1 cations, Ba2+, Ca2+, SrS2-Group 1 cations, Ba2+, Ca2+, Sr CO_3^{2-} , PO_4^{3-} , F^- Group 1 cations, NH4+	

We can use the expression for molarity to determine the number of moles of $CaCl_2$:

We can use the expression for molarity to determine the number of moles of $CaCl_2$:

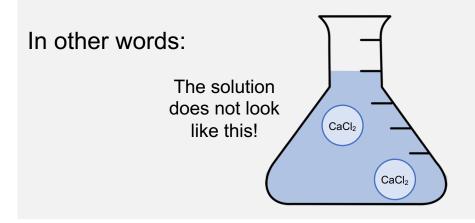
$$[CaCl_2] = \frac{\# \text{ moles } CaCl_2}{\text{Volume (L)}}$$
$$2.00 \frac{\text{mol}}{\text{L}} = \frac{\text{x mol}}{60.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}}$$
$$\text{x} = 0.120 \text{ mol } CaCl_2$$

We can use the expression for molarity to determine the number of moles of $CaCl_2$:

 $[CaCl_2] = \frac{\# \text{ moles } CaCl_2}{\text{Volume (L)}}$ $2.00 \frac{\text{mol}}{\text{L}} = \frac{\text{x mol}}{60.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}}$ $\text{x} = 0.120 \text{ mol } CaCl_2$

Q: Is this the best microscopic picture of what actually goes on in solution?

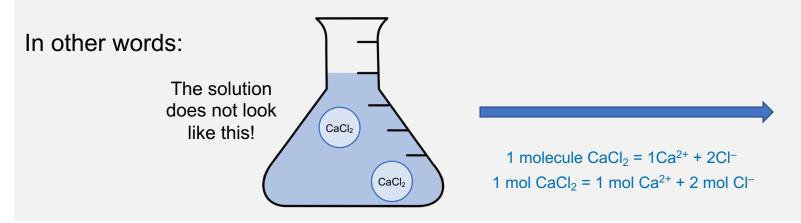
We can use the expression for molarity to determine the number of moles of CaCl₂:


 $[CaCl_2] = \frac{\# \text{ moles } CaCl_2}{\text{Volume (L)}}$ $2.00 \frac{\text{mol}}{\text{L}} = \frac{\text{x mol}}{60.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}}$ $\text{x} = 0.120 \text{ mol } CaCl_2$

Q: Is this the best microscopic picture of what actually goes on in solution?

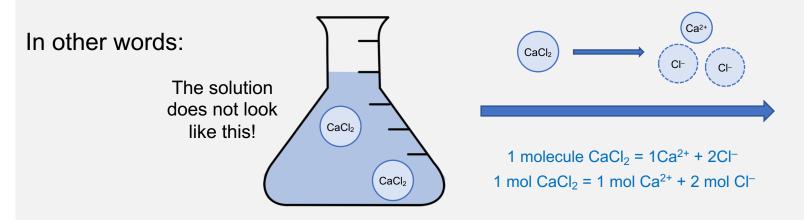
We can use the expression for molarity to determine the number of moles of CaCl₂:

 $[CaCl_2] = \frac{\# \text{ moles } CaCl_2}{\text{Volume (L)}}$ $2.00 \frac{\text{mol}}{\text{L}} = \frac{\text{x mol}}{60.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}}$ $\text{x} = 0.120 \text{ mol } CaCl_2$


Q: Is this the best microscopic picture of what actually goes on in solution?

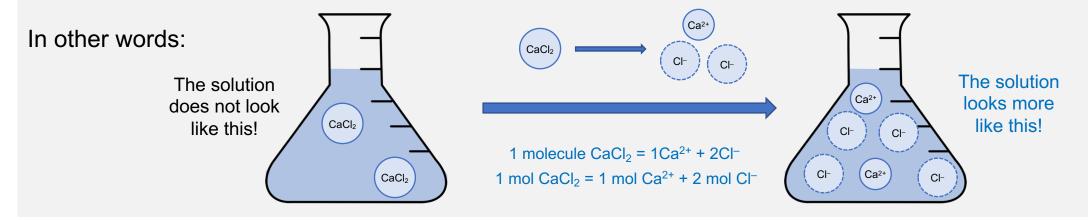
We can use the expression for molarity to determine the number of moles of CaCl₂:

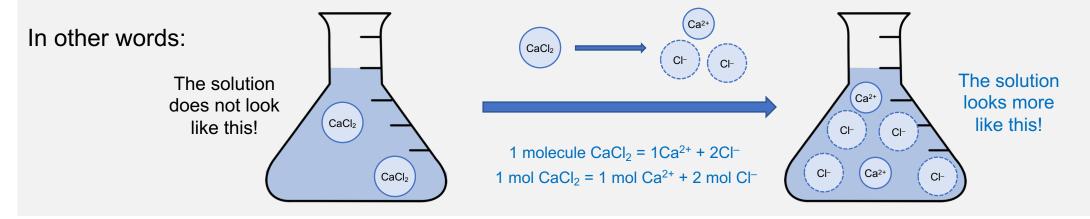
 $[CaCl_2] = \frac{\# \text{ moles } CaCl_2}{\text{Volume (L)}}$ $2.00 \frac{\text{mol}}{\text{L}} = \frac{\text{x mol}}{60.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}}$ $\text{x} = 0.120 \text{ mol } CaCl_2$


Q: Is this the best microscopic picture of what actually goes on in solution?

We can use the expression for molarity to determine the number of moles of CaCl₂:

 $[CaCl_2] = \frac{\# \text{ moles } CaCl_2}{\text{Volume (L)}}$ $2.00 \frac{\text{mol}}{\text{L}} = \frac{\text{x mol}}{60.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}}$ $\text{x} = 0.120 \text{ mol } CaCl_2$


Q: Is this the best microscopic picture of what actually goes on in solution?


We can use the expression for molarity to determine the number of moles of CaCl₂:

 $[CaCl_2] = \frac{\# \text{ moles } CaCl_2}{\text{Volume (L)}}$ $2.00 \frac{\text{mol}}{\text{L}} = \frac{\text{x mol}}{60.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}}$ $\text{x} = 0.120 \text{ mol } CaCl_2$

Q: Is this the best microscopic picture of what actually goes on in solution?

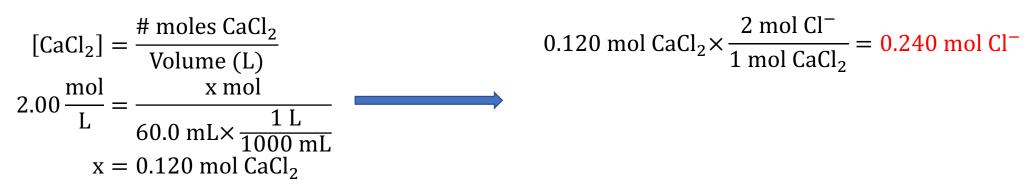
Q: Is this the best microscopic picture of what actually goes on in solution?

We know 1 mole of CaCl₂ dissociates into 1 mole of Ca²⁺ and 2 moles of Cl⁻ ions:

 $[CaCl_2] = \frac{\# \text{ moles } CaCl_2}{\text{Volume (L)}}$ $2.00 \frac{\text{mol}}{\text{L}} = \frac{\text{x mol}}{60.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}}$ $\text{x} = 0.120 \text{ mol } CaCl_2$

Q: Is this the best microscopic picture of what actually goes on in solution?

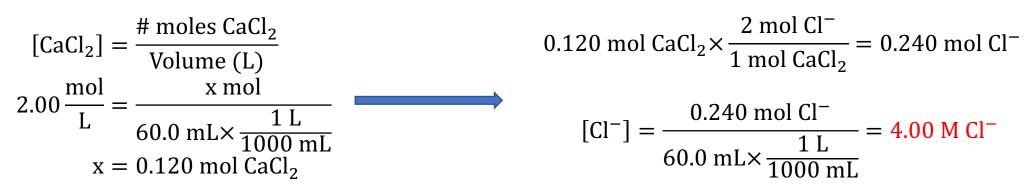
We know 1 mole of CaCl₂ dissociates into 1 mole of Ca²⁺ and 2 moles of Cl⁻ ions:



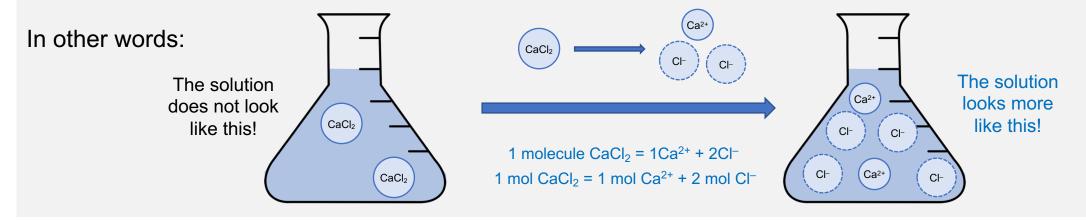
Q: Is this the best microscopic picture of what actually goes on in solution?

What is the <u>concentration</u> of <u>chloride ions</u> in 60.0 mL of a 2.00 M calcium chloride solution?

We know 1 mole of CaCl₂ dissociates into 1 mole of Ca²⁺ and 2 moles of Cl⁻ ions:



Q: Is this the best microscopic picture of what actually goes on in solution?



What is the <u>concentration</u> of <u>chloride ions</u> in 60.0 mL of a 2.00 M calcium chloride solution?

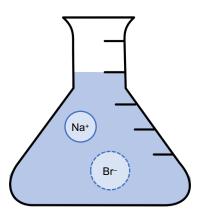
We know 1 mole of CaCl₂ dissociates into 1 mole of Ca²⁺ and 2 moles of Cl⁻ ions:

Q: Is this the best microscopic picture of what actually goes on in solution?

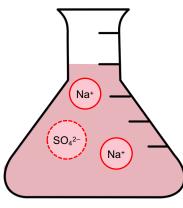
NaBr Na_2SO_4 Na_3PO_4

NaBr Na_2SO_4 Na_3PO_4

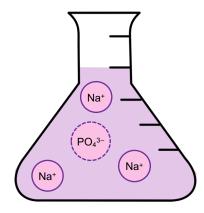
These are all soluble salts!


We can represent the dissociation of each salt into its ions:

NaBr Na_2SO_4 Na_3PO_4

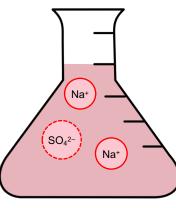

These are all soluble salts!

We can represent the dissociation of each salt into its ions:

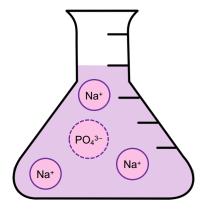

1 molecule NaBr = 1Na⁺ + 1Br⁻ 1 mol NaBr = 1 mol Na⁺ + 1 mol Br⁻

1 molecule $Na_2SO_4 = 2Na^+ + 1SO_4^{2-}$ 1 mol $Na_2SO_4 = 2$ mol $Na^+ + 1$ mol SO_4^{2-}

1 molecule $Na_3PO_4 = 3Na^+ + 1PO_4^{3-}$ 1 mol $Na_3PO_4 = 3$ mol $Na^+ + 1$ mol PO_4^{3-}


NaBr Na_2SO_4 Na_3PO_4

These are all soluble salts!


We can represent the dissociation of each salt into its ions:

```
1 molecule NaBr = 1Na<sup>+</sup> + 1Br<sup>-</sup>
1 mol NaBr = 1 mol Na<sup>+</sup> + 1 mol Br<sup>-</sup>
```

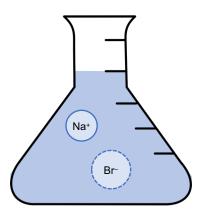
Na⁺ Br 1 molecule $Na_2SO_4 = 2Na^+ + 1SO_4^{2-}$ 1 mol $Na_2SO_4 = 2$ mol $Na^+ + 1$ mol SO_4^{2-}

1 molecule $Na_3PO_4 = 3Na^+ + 1PO_4^{3-}$ 1 mol $Na_3PO_4 = 3$ mol $Na^+ + 1$ mol PO_4^{3-}

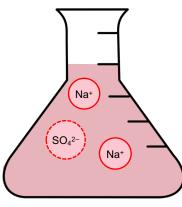
Now it's easier to understand that a solution of Na₃PO₄ would have the highest concentration of dissolved ions (4 ions).

Dr. Mioy Huynh

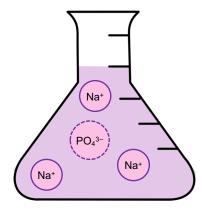
Which of the following has the greatest concentration of dissolved ions in solution?


 $0.25 \text{ M NaBr} \qquad 0.25 \text{ M Na}_2 \text{SO}_4$

0.25 M Na₃PO₄


These are all soluble salts!

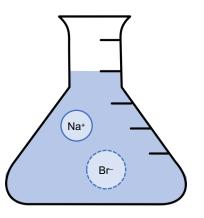
We can represent the dissociation of each salt into its ions:


1 molecule NaBr = 1Na⁺ + 1Br⁻ 1 mol NaBr = 1 mol Na⁺ + 1 mol Br⁻

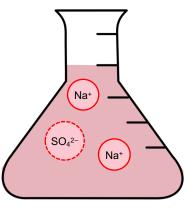
1 molecule $Na_2SO_4 = 2Na^+ + 1SO_4^{2-}$ 1 mol $Na_2SO_4 = 2$ mol $Na^+ + 1$ mol SO_4^{2-}

1 molecule $Na_3PO_4 = 3Na^+ + 1PO_4^{3-}$ 1 mol $Na_3PO_4 = 3$ mol $Na^+ + 1$ mol PO_4^{3-}

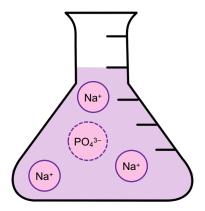
Which of the following has the greatest concentration of dissolved ions in solution?


0.25 M NaBr 0.25 M Na₂SO₄

0.25 M Na₃PO₄


These are all soluble salts!

We can represent the dissociation of each salt into its ions:


1 molecule NaBr = 1Na⁺ + 1Br⁻ 1 mol NaBr = 1 mol Na⁺ + 1 mol Br⁻

1 molecule $Na_2SO_4 = 2Na^+ + 1SO_4^{2-}$ 1 mol $Na_2SO_4 = 2$ mol $Na^+ + 1$ mol SO_4^{2-}

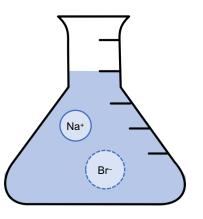
1 molecule $Na_3PO_4 = 3Na^+ + 1PO_4^{3-}$ 1 mol $Na_3PO_4 = 3$ mol $Na^+ + 1$ mol PO_4^{3-}

Understand that the concentration of *ions* would be:

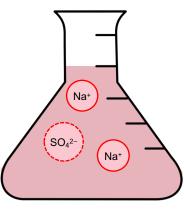
1 NaBr : 2 ions 1 Na₂SO₄ : 3 ions

1 Na₃PO₄ : 4 ions

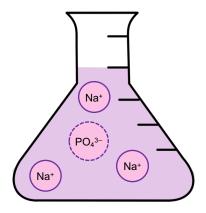
Which of the following has the greatest concentration of dissolved ions in solution?


0.25 M Na₂SO₄ 0.25 M NaBr

0.25 M Na₃PO₄


These are all soluble salts!

We can represent the dissociation of each salt into its ions:


1 molecule NaBr = 1Na⁺ + 1Br⁻ $1 \text{ mol NaBr} = 1 \text{ mol Na}^+ + 1 \text{ mol Br}^-$

1 molecule $Na_2SO_4 = 2Na^+ + 1SO_4^{2-}$ 1 mol Na₂SO₄ = 2 mol Na⁺ + 1 mol SO₄²⁻

1 molecule $Na_3PO_4 = 3Na^+ + 1PO_4^{3-}$ $1 \text{ mol Na}_{3}\text{PO}_{4} = 3 \text{ mol Na}^{+} + 1 \text{ mol PO}_{4}^{3-}$

Understand that the concentration of *ions* would be:

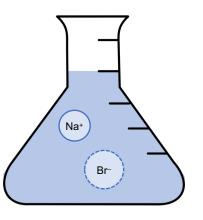
1 NaBr : 2 ions $[ions] = 2 \times 0.25 \text{ M} = 0.50 \text{ M}$ $[ions] = 3 \times 0.25 \text{ M} = 0.75 \text{ M}$

 $1 \operatorname{Na}_2 \operatorname{SO}_4$: 3 ions

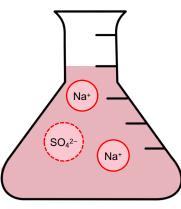
 $1 \text{ Na}_3 \text{PO}_4$: 4 ions $[ions] = 4 \times 0.25 \text{ M} = 1.00 \text{ M}$

Which of the following has the greatest concentration of dissolved ions in solution?

0.25 M NaBr


 $0.25 \text{ M} \text{Na}_2 \text{SO}_4$

0.25 M Na₃PO₄


These are all soluble salts!

We can represent the dissociation of each salt into its ions:

```
1 molecule NaBr = 1Na<sup>+</sup> + 1Br<sup>-</sup>
1 \text{ mol NaBr} = 1 \text{ mol Na}^+ + 1 \text{ mol Br}^-
```


1 molecule $Na_2SO_4 = 2Na^+ + 1SO_4^{2-}$ 1 mol Na₂SO₄ = 2 mol Na⁺ + 1 mol SO₄²⁻

Understand that the concentration of *ions* would be:

1 NaBr : 2 ions $[ions] = 2 \times 0.25 \text{ M} = 0.50 \text{ M}$ $[ions] = 3 \times 0.25 \text{ M} = 0.75 \text{ M}$

 $1 \operatorname{Na}_2 \operatorname{SO}_4$: 3 ions

1 molecule $Na_3PO_4 = 3Na^+ + 1PO_4^{3-}$ $1 \text{ mol Na}_{3}\text{PO}_{4} = 3 \text{ mol Na}^{+} + 1 \text{ mol PO}_{4}^{3-}$ Na⁺ PO₄³⁻ Na⁺ Na⁺

 $1 \text{ Na}_3 \text{PO}_4$: 4 ions $[ions] = 4 \times 0.25 \text{ M} = 1.00 \text{ M}$