Stoichiometry Mole-Mole Relationship

DR. MIOY T. HUYNH
YALE UNIVERSITY
CHEMISTRY 161
FALL 2018

www.mioy.org/chem161

Chemical Equations

What do they tell us?

What does it mean to be "balanced"?

How do we balance chemical equations?

What do chemical equations tell us?

- Formulas for the reactants (left side)
- Formulas for the products (right side)
- Phases, most of the time
- Relative amounts of reactants of reactants and products

REACTANT \rightarrow PRODUCTS

What does it mean to be "balanced"?

- Same number of each type of atom on the left (reactants) and right (products) side.
- Law of Conservation of Mass

REACTANT \rightarrow PRODUCTS

How do we balance chemical equations?

- Mainly trial-and-error (some general strategies though).
- Make sure you have the same number of each type of atom on both sides of the equation.
- Do NOT balance by changing subscripts! Seriously, don't.
- Balance the most complicated molecule first.

REACTANT \rightarrow PRODUCTS

What makes a chemical reaction?

Hydrogen gas and oxygen gas react to form water vapor.

What makes a chemical reaction?

Hydrogen gas and oxygen gas react to form water vapor.
(words) hydrogen gas + oxygen gas \rightarrow water vapor

What makes a chemical reaction?

Hydrogen gas and oxygen gas react to form water vapor.
(words) hydrogen gas + oxygen gas \rightarrow water vapor
(drawings)
∞
$+\quad 0$
$\rightarrow \quad \mathrm{O}_{0}$

What makes a chemical reaction?

Hydrogen gas and oxygen gas react to form water vapor.
(words) hydrogen gas + oxygen gas \rightarrow water vapor
(drawings)
∞
$\rightarrow \quad \mathrm{O}_{0}$

Reactants	Products
2 H atoms	2 H atoms
2 O atoms	1 O atoms

Q: Why am I missing an
O atom in the products?

What makes a chemical reaction?

Hydrogen gas and oxygen gas react to form water vapor.
(words) hydrogen gas + oxygen gas \rightarrow water vapor
(drawings)
$\infty \quad+\infty \rightarrow \infty_{0}$

Reactants	Products
2 H atoms	2 H atoms
2 O atoms	1 O atoms

Q: Why am I missing an
O atom in the products?
A: We need to balance this equation!

What makes a chemical reaction?

Hydrogen gas and oxygen gas react to form water vapor.
(words) hydrogen gas + oxygen gas \rightarrow water vapor
(drawings)
$\infty+\infty \quad \rightarrow \infty \alpha_{0}$
$\infty \infty+\infty \rightarrow \infty_{0} \alpha_{0}$

What makes a chemical reaction?

Hydrogen gas and oxygen gas react to form water vapor.
(words) hydrogen gas + oxygen gas \rightarrow water vapor
(drawings)
$\infty+\infty \rightarrow \alpha_{0}$
$\infty \infty^{\infty}+\infty \infty \rightarrow \infty_{0} \alpha_{0}$

Reactants	Products
2 H atoms	2 H atoms
2 O atoms	1 O atoms
Reactants	Products
4 H atoms	4 H atoms
4 O atoms	4 O atoms

What makes a chemical reaction?

Hydrogen gas and oxygen gas react to form water vapor.
(words) hydrogen gas + oxygen gas \rightarrow water vapor
(drawings)

What makes a chemical reaction?

Hydrogen gas and oxygen gas react to form water vapor.
(words) hydrogen gas + oxygen gas \rightarrow water vapor
(drawings)

Reactants	Products
2 H atoms	2 H atoms
2 O atoms	1 O atoms

Reactants	Products
4 H atoms	4 H atoms

4 O atoms 4 O atoms
(equation) $2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g) \begin{gathered}\text { Pictures aren't always } \\ \text { convenient though... }\end{gathered}$

How do I read a chemical equation?

How do I read a chemical equation?

- Subscripts are not conserved!
- Coefficients have no real meaning by themselves...
- RATIO of coefficient is what's important.
- Read it like a recipe:
"For every $2 \mathrm{H}_{2}$ molecules, we need $1 \mathrm{O}_{2}$ molecule to produce $2 \mathrm{H}_{2} \mathrm{O}$ molecules."

Write a balanced chemical equation for ammonia synthesis from nitrogen and hydrogen gases.

Write a balanced chemical equation for ammonia synthesis from nitrogen and hydrogen gases.

Write out the core of the equation from the description:

$$
\ldots \mathrm{N}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{NH}_{3}(\mathrm{~g})
$$

Write a balanced chemical equation for ammonia synthesis from nitrogen and hydrogen gases.

Write out the core of the equation from the description:

$$
\ldots \mathrm{N}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{NH}_{3}(\mathrm{~g})
$$

Take an inventory of the atoms on the reactants and products:

Reactants	Products
2 N atoms	1 N atom
2 H atoms	3 H atoms

Obviously, this isn't balanced
since we have different numbers
of atoms on the left and right!

Write a balanced chemical equation for ammonia synthesis from nitrogen and hydrogen gases.

Write out the core of the equation from the description:

$$
\ldots \mathrm{N}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{NH}_{3}(\mathrm{~g})
$$

Take an inventory of the atoms on the reactants and products:

Reactants	Products
2 N atoms	1 N atom
2 H atoms	3 H atoms

$$
\begin{aligned}
& \text { Obviously, this isn't balanced } \\
& \text { since we have different numbers } \\
& \text { of atoms on the left and right! } \\
& \text { Let's just put a } 2 \text { in front of } \mathrm{NH}_{3} \\
& \text { to balance the } \mathrm{N} \text { atoms first. }
\end{aligned}
$$

Write a balanced chemical equation for ammonia synthesis from nitrogen and hydrogen gases.

Write out the core of the equation from the description:

$$
\ldots \mathrm{N}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \underline{2} \mathrm{NH}_{3}(g)
$$

Take an inventory of the atoms on the reactants and products:

Reactants	Products
2 N atoms	2 N atom
2 H atoms	6 H atoms

> Obviously, this isn't balanced since we have different numbers
> of atoms on the left and right!
> Let's just put a 2 in front of NH_{3}
> to balance the N atoms first.

Write a balanced chemical equation for ammonia synthesis from nitrogen and hydrogen gases.

Write out the core of the equation from the description:

$$
\ldots \mathrm{N}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \underline{2} \mathrm{NH}_{3}(\mathrm{~g})
$$

Take an inventory of the atoms on the reactants and products:

Reactants	Products
2 N atoms	2 N atom
2 H atoms	6 H atoms

$$
\begin{aligned}
& \text { Obviously, this isn't balanced } \\
& \text { since we have different numbers } \\
& \text { of atoms on the left and right! } \\
& \text { Let's just put a } 2 \text { in front of } \mathrm{NH}_{3} \\
& \text { to balance the } \mathrm{N} \text { atoms first. } \\
& \text { But, now our } \mathrm{H} \text { atoms changed! } \\
& \text { Let's put a } 3 \text { in front of } \mathrm{H}_{2} \text {. }
\end{aligned}
$$

Write a balanced chemical equation for ammonia synthesis from nitrogen and hydrogen gases.

Write out the core of the equation from the description:

$$
\underline{N_{2}}(g)+\underline{3} \mathrm{H}_{2}(g) \rightarrow \underline{2} \mathrm{NH}_{3}(g)
$$

Take an inventory of the atoms on the reactants and products:

Reactants	Products
2 N atoms	2 N atom
6 H atoms	6 H atoms

$$
\begin{aligned}
& \text { Obviously, this isn't balanced } \\
& \text { since we have different numbers } \\
& \text { of atoms on the left and right! } \\
& \text { Let's just put a } 2 \text { in front of } \mathrm{NH}_{3} \\
& \text { to balance the } \mathrm{N} \text { atoms first. } \\
& \text { But, now our } \mathrm{H} \text { atoms changed! } \\
& \text { Let's put a } 3 \text { in front of } \mathrm{H}_{2} \text {. }
\end{aligned}
$$

Write a balanced chemical equation for ammonia synthesis from nitrogen and hydrogen gases.

Write out the core of the equation from the description:

$$
\underline{1} \mathrm{~N}_{2}(g)+\underline{3} \mathrm{H}_{2}(g) \rightarrow \underline{2} \mathrm{NH}_{3}(g)
$$

Take an inventory of the atoms on the reactants and products:

Reactants	Products
2 N atoms	2 N atom
6 H atoms	6 H atoms

Don't forget the 1 in front of N_{2} though.

Write a balanced chemical equation for ammonia synthesis from nitrogen and hydrogen gases.

Write out the core of the equation from the description:

$$
\underline{1} \mathrm{~N}_{2}(g)+\underline{3} \mathrm{H}_{2}(g) \rightarrow \underline{2} \mathrm{NH}_{3}(g)
$$

Take an inventory of the atoms on the reactants and products:

Reactants	Products
2 N atoms	2 N atom
6 H atoms	6 H atoms

$$
\begin{aligned}
& \text { Obviously, this isn't balanced } \\
& \text { since we have different numbers } \\
& \text { of atoms on the left and right! } \\
& \text { Let's just put a } 2 \text { in front of } \mathrm{NH}_{3} \\
& \text { to balance the } \mathrm{N} \text { atoms first. } \\
& \text { But, now our } \mathrm{H} \text { atoms changed! } \\
& \text { Let's put a } 3 \text { in front of } \mathrm{H}_{2} \text {. }
\end{aligned}
$$

Don't forget the 1 in front of N_{2} though.
"To make 2 moles NH_{3}, we need 1 mole N_{2} and 3 moles H_{2}."

If 5.00 g of CH_{4} (methane) is burned, what mass of water can be produced?

If 5.00 g of CH_{4} (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

$$
\ldots \mathrm{CH}_{4}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow _\mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

If 5.00 g of CH_{4} (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

Q: Mioy, I don't understand how you knew what reactants and products to write though?

A: Good point! How did I know?
When we "burn" a hydrocarbon (a compound with C, H, and/or O atoms), it always reacts with O_{2} gas in the air to form CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ gases as products.

If 5.00 g of CH_{4} (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

$$
\ldots \mathrm{CH}_{4}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow _\mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Now balance the chemical equation above. Can you do it?

If 5.00 g of CH_{4} (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

$$
\underline{1} \mathrm{CH}_{4}(\mathrm{~g})+\underline{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underline{1} \mathrm{CO}_{2}(\mathrm{~g})+\underline{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Now the chemical equation above is balanced!

If 5.00 g of CH_{4} (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

$$
\underline{1} \mathrm{CH}_{4}(\mathrm{~g})+\underline{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underline{1} \mathrm{CO}_{2}(\mathrm{~g})+\underline{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Now the chemical equation above is balanced!
"For every $1 \mathrm{~mol} \mathrm{CH}_{4}$, we need to react with $2 \mathrm{~mol} \mathrm{O}_{2}$ to produce $1 \mathrm{~mol} \mathrm{CO}_{2}$ and $2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$."

If 5.00 g of CH_{4} (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

$$
\underline{1} \mathrm{CH}_{4}(\mathrm{~g})+\underline{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underline{1} \mathrm{CO}_{2}(\mathrm{~g})+\underline{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Now the chemical equation above is balanced!
"For every $1 \mathrm{~mol} \mathrm{CH}_{4}$, we need to react with $2 \mathrm{~mol} \mathrm{O}_{2}$ to produce $1 \mathrm{~mol} \mathrm{CO}_{2}$ and $2 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$."

REMEMBER MY TIP: If you don't know how to start a problem, convert whatever they give you into moles first.

If 5.00 g of CH_{4} (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

$$
\underline{1} \mathrm{CH}_{4}(\mathrm{~g})+\underline{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underline{1} \mathrm{CO}_{2}(\mathrm{~g})+\underline{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Now the chemical equation above is balanced!
"For every $1 \mathrm{~mol} \mathrm{CH}_{4}$, we need to react with $2 \mathrm{~mol} \mathrm{O}_{2}$ to produce $1 \mathrm{~mol} \mathrm{CO}_{2}$ and $2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$."

REMEMBER MY TIP: If you don't know how to start a problem, convert whatever they give you into moles first.

1. Use molar mass of CH_{4} to convert from mass to moles. $\quad 5.00 \mathrm{~g} \mathrm{CH}_{4} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{16.04 \mathrm{~g} \mathrm{CH}_{4}}=0.311_{7} \mathrm{~mol} \mathrm{CH}_{4}$

If 5.00 g of CH_{4} (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

$$
\underline{1} \mathrm{CH}_{4}(\mathrm{~g})+\underline{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underline{1} \mathrm{CO}_{2}(\mathrm{~g})+\underline{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Now the chemical equation above is balanced!
"For every $1 \mathrm{~mol} \mathrm{CH}_{4}$, we need to react with $2 \mathrm{~mol} \mathrm{O}_{2}$ to produce $1 \mathrm{~mol} \mathrm{CO}_{2}$ and $2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$."

REMEMBER MY TIP: If you don't know how to start a problem, convert whatever they give you into moles first.

1. Use molar mass of CH_{4} to convert from mass to moles.

$$
5.00 \mathrm{~g} \mathrm{CH}_{4} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{16.04 \mathrm{~g} \mathrm{CH}_{4}}=0.311_{7} \mathrm{~mol} \mathrm{CH}_{4}
$$

2. Use 2:1 $\mathrm{H}_{2} \mathrm{O}: \mathrm{CH}_{4}$ mole-mole ratio to find moles of $\mathrm{H}_{2} \mathrm{O}$. $0.311_{7} \mathrm{~mol} \mathrm{CH}_{4} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{CH}_{4}}=0.623_{4} \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

If 5.00 g of CH_{4} (methane) is burned, what mass of water can be produced?

$$
\begin{aligned}
& \text { Write out the core of the equation from the description: } \\
& \qquad 1 \mathrm{CH}_{4}(g)+\underline{2} \mathrm{O}_{2}(g) \rightarrow \underline{1} \mathrm{CO}_{2}(g)+\underline{2} \mathrm{H}_{2} \mathrm{O}(g)
\end{aligned}
$$

Now the chemical equation above is balanced!
"For every $1 \mathrm{~mol} \mathrm{CH}_{4}$, we need to react with $2 \mathrm{~mol} \mathrm{O}_{2}$ to produce $1 \mathrm{~mol} \mathrm{CO}_{2}$ and $2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$."

REMEMBER MY TIP: If you don't know how to start a problem, convert whatever they give you into moles first.

1. Use molar mass of CH_{4} to convert from mass to moles.
2. Use 2:1 $\mathrm{H}_{2} \mathrm{O}: \mathrm{CH}_{4}$ mole-mole ratio to find moles of $\mathrm{H}_{2} \mathrm{O}$.
3. Use molar mass of $\mathrm{H}_{2} \mathrm{O}$ to convert from moles to mass. $0.623_{4} \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \times \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=11.2 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

How many moles of oxygen gas are required to react completely with 2.0 moles of sugar crystals, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$?

How many moles of oxygen gas are required to react completely with 2.0 moles of sugar crystals, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$?

Write out the core of the equation from the description:

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

How many moles of oxygen gas are required to react completely with 2.0 moles of sugar crystals, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$?

Write out the core of the equation from the description:

$$
\underline{1} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})+\underline{12} \mathrm{O}_{2}(g) \rightarrow \underline{12} \mathrm{CO}_{2}(g)+\underline{11} \mathrm{H}_{2} \mathrm{O}(g)
$$

Balance the equation above.

How many moles of oxygen gas are required to react completely with 2.0 moles of sugar crystals, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$?

The balanced chemical equation is:

$$
\underline{1} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})+\underline{12} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underline{12} \mathrm{CO}_{2}(\mathrm{~g})+\underline{11} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

"For every $1 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, we need to react with $12 \mathrm{~mol} \mathrm{O}_{2}$ to produce $12 \mathrm{~mol} \mathrm{CO}_{2}$ and $11 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$."

How many moles of oxygen gas are required to react completely

 with 2.0 moles of sugar crystals, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$?The balanced chemical equation is:

$$
\underline{1} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})+\underline{12} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underline{12} \mathrm{CO}_{2}(\mathrm{~g})+\underline{11} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

"For every $1 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, we need to react with $12 \mathrm{~mol} \mathrm{O}_{2}$ to produce $12 \mathrm{~mol} \mathrm{CO}_{2}$ and $11 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$."

REMEMBER: We only care about the ratio of coefficients, so we can still use the mole-mole ratio to "go backwards."

$$
2.0 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \times \frac{12 \mathrm{~mol} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}=24 \mathrm{~mol} \mathrm{O}
$$

Pouring an aqueous solution of hydrochloric acid onto a solid block of

 magnesium metal produces an aqueous solution of magnesium chloride and hydrogen gas.
A) Given 3.00 g Mg , how many moles of hydrochloric acid do we need?
B) If we produce $5.00 \mathrm{~g} \mathrm{H}_{2}$ gas, what mass of MgCl_{2} solution is produced?
C) If we produce $4.00 \mathrm{~g} \mathrm{H}_{2}$ gas, what mass of HCl did we need?

Pouring an aqueous solution of hydrochloric acid onto a solid block of

 magnesium metal produces an aqueous solution of magnesium chloride and hydrogen gas.$$
\mathrm{Mg}(\mathrm{~s})+\ldots \mathrm{HCl}(a q) \rightarrow \ldots \mathrm{MgCl}_{2}(a q)+\ldots \mathrm{H}_{2}(g)
$$

A) Given 3.00 g Mg , how many moles of hydrochloric acid do we need?
B) If we produce $5.00 \mathrm{~g} \mathrm{H}_{2}$ gas, what mass of MgCl_{2} solution is produced?
C) If we produce $4.00 \mathrm{~g} \mathrm{H}_{2}$ gas, what mass of HCl did we need?

Pouring an aqueous solution of hydrochloric acid onto a solid block of

 magnesium metal produces an aqueous solution of magnesium chloride and hydrogen gas.$$
1 \mathrm{Mg}(\mathrm{~s})+\underline{2} \mathrm{HCl}(a q) \rightarrow \underline{1} \mathrm{MgCl}_{2}(a q)+1 \mathrm{H}_{2}(g)
$$

A) Given 3.00 g Mg , how many moles of hydrochloric acid do we need?
B) If we produce $5.00 \mathrm{~g} \mathrm{H}_{2}$ gas, what mass of MgCl_{2} solution is produced?
C) If we produce $4.00 \mathrm{~g} \mathrm{H}_{2}$ gas, what mass of HCl did we need?

Pouring an aqueous solution of hydrochloric acid onto a solid block of

 magnesium metal produces an aqueous solution of magnesium chloride and hydrogen gas.$$
1 \mathrm{Mg}(\mathrm{~s})+\underline{2} \mathrm{HCl}(a q) \rightarrow \underline{1} \mathrm{MgCl}_{2}(a q)+1 \mathrm{H}_{2}(g)
$$

A) Given 3.00 g Mg , how many moles of hydrochloric acid do we need?

$$
3.00 \mathrm{~mol} \mathrm{Mg} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Mg}}=6.00 \mathrm{~mol} \mathrm{HCl}
$$

B) If we produce $5.00 \mathrm{~g} \mathrm{H}_{2}$ gas, what mass of MgCl_{2} solution is produced?
C) If we produce $4.00 \mathrm{~g} \mathrm{H}_{2}$ gas, what mass of HCl did we need?

Pouring an aqueous solution of hydrochloric acid onto a solid block of

 magnesium metal produces an aqueous solution of magnesium chloride and hydrogen gas.$$
\underline{1} \mathrm{Mg}(\mathrm{~s})+\underline{2} \mathrm{HCl}(a q) \rightarrow \underline{1} \mathrm{MgCl}_{2}(a q)+\underline{1} \mathrm{H}_{2}(g)
$$

A) Given 3.00 g Mg , how many moles of hydrochloric acid do we need?

$$
3.00 \mathrm{~mol} \mathrm{Mg} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Mg}}=6.00 \mathrm{~mol} \mathrm{HCl}
$$

B) If we produce $5.00 \mathrm{~g} \mathrm{H}_{2}$ gas, what mass of MgCl_{2} solution is produced?

$$
5.00 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{MgCl}_{2}}{1 \mathrm{~mol} \mathrm{H}_{2}} \times \frac{95.21 \mathrm{~g} \mathrm{MgCl}_{2}}{1 \mathrm{~mol} \mathrm{MgCl}_{2}}=236 \mathrm{~g} \mathrm{MgCl}_{2}
$$

C) If we produce $4.00 \mathrm{~g} \mathrm{H}_{2}$ gas, what mass of HCl did we need?

Pouring an aqueous solution of hydrochloric acid onto a solid block of

 magnesium metal produces an aqueous solution of magnesium chloride and hydrogen gas.$$
1 \mathrm{Mg}(\mathrm{~s})+\underline{2} \mathrm{HCl}(a q) \rightarrow \underline{1} \mathrm{MgCl}_{2}(a q)+\underline{1} \mathrm{H}_{2}(g)
$$

A) Given 3.00 g Mg , how many moles of hydrochloric acid do we need?

$$
3.00 \mathrm{~mol} \mathrm{Mg} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Mg}}=6.00 \mathrm{~mol} \mathrm{HCl}
$$

B) If we produce $5.00 \mathrm{~g} \mathrm{H}_{2}$ gas, what mass of MgCl_{2} solution is produced?

$$
5.00 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{MgCl}_{2}}{1 \mathrm{~mol} \mathrm{H}_{2}} \times \frac{95.21 \mathrm{~g} \mathrm{MgCl}_{2}}{1 \mathrm{~mol} \mathrm{MgCl}_{2}}=236 \mathrm{~g} \mathrm{MgCl}_{2}
$$

C) If we produce $4.00 \mathrm{~g} \mathrm{H}_{2}$ gas, what mass of HCl did we need?

$$
4.00 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{H}_{2}} \times \frac{36.46 \mathrm{~g} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{HCl}}=145 \mathrm{~g} \mathrm{HCl}
$$

REMEMBER: We only care about the ratio of coefficients, so we can use mole-mole ratios to go between reactants-to-reactants, reactants-to-products, products-to-reactants, or products-to-products.

REMEMBER THIS?

THE MOLE IS CENTRAL

SUMMARIZING STOICHIOMETRY RELATIONSHIPS

THE MOLE IS STILL CENTRAL

I hope now you understand why I say to convert to moles before you do anything else. It's because a balanced chemical equation gives us mole-to-mole ratios that we can use to convert between one reactant/product to another reactant/product.

