Stoichiometry Mole-Mole Relationship

DR. MIOY T. HUYNH YALE UNIVERSITY CHEMISTRY 161 FALL 2018

www.mioy.org/chem161

Chemical Equations

What do they tell us?

What does it mean to be "balanced"?

How do we balance chemical equations?

What do chemical equations tell us?

- Formulas for the reactants (left side)
- Formulas for the products (right side)
- Phases, most of the time
- **<u>Relative</u>** amounts of reactants of reactants and products

$\mathsf{REACTANT} \rightarrow \mathsf{PRODUCTS}$

What does it mean to be "balanced"?

- Same number of each type of atom on the left (reactants) and right (products) side.
- Law of Conservation of Mass

$\mathsf{REACTANT} \rightarrow \mathsf{PRODUCTS}$

How do we balance chemical equations?

- Mainly trial-and-error (some general strategies though).
- Make sure you have the same number of each type of atom on both sides of the equation.
- Do <u>NOT</u> balance by changing subscripts! Seriously, don't.
- Balance the most complicated molecule *first*.

$\mathsf{REACTANT} \rightarrow \mathsf{PRODUCTS}$

Hydrogen gas and oxygen gas react to form water vapor.

Hydrogen gas and oxygen gas react to form water vapor.

(words) hydrogen gas + oxygen gas \rightarrow water vapor

Hydrogen gas and oxygen gas react to form water vapor.

(words) hydrogen gas + oxygen gas \rightarrow water vapor

(drawings) ∞ + \bigcirc \rightarrow

Hydrogen gas and oxygen gas react to form water vapor.

(words) hydrogen gas + oxygen gas \rightarrow water vapor (drawings) ∞ + $\longrightarrow \longrightarrow \longrightarrow 20$ atoms 20 atoms 10 atoms 20 atoms 10 atoms 20 atom

Q: Why am I missing an O atom in the products?

Hydrogen gas and oxygen gas react to form water vapor.

(words) hydrogen gas + oxygen gas \rightarrow water vapor (drawings) ∞ + $\longrightarrow \longrightarrow \bigoplus$ 2 Hatoms 2 H atoms 2 O atoms 1 O atoms

Q: Why am I missing an O atom in the products?

A: We need to balance this equation!

Hydrogen gas and oxygen gas react to form water vapor.

(words) hydrogen gas + oxygen gas \rightarrow water vapor (drawings) ∞ + \longrightarrow \rightarrow \bigcirc 2 H atoms 2 H atoms 2 H atoms2 O atoms 1 O atoms

Hydrogen gas and oxygen gas react to form water vapor.

Great! Now we're all good!

Hydrogen gas and oxygen gas react to form water vapor.

Pictures aren't always convenient though...

Hydrogen gas and oxygen gas react to form water vapor.

How do I read a chemical equation?

How do I read a chemical equation?

- Subscripts are not conserved!
- Coefficients have no real meaning by themselves...
- <u>RATIO</u> of coefficient is what's important.
- Read it like a recipe:

"For every 2 H_2 molecules, we need 1 O_2 molecule to produce 2 H_2O molecules."

Write out the core of the equation from the description:

 $\underline{\quad } \mathsf{N}_{2}\left(g\right) \ + \underline{\quad } \mathsf{H}_{2}\left(g\right) \ \rightarrow \underline{\quad } \mathsf{N}\mathsf{H}_{3}\left(g\right)$

Write out the core of the equation from the description:

 $\underline{\quad} \mathsf{N}_{2}\left(g\right) + \underline{\quad} \mathsf{H}_{2}\left(g\right) \rightarrow \underline{\quad} \mathsf{NH}_{3}\left(g\right)$

Take an inventory of the atoms on the reactants and products:

Reactants	Products	Obviously, this isn't balanced since we have different numbers of atoms on the left and right!
2 N atoms	1 N atom	
2 H atoms	3 H atoms	

Write out the core of the equation from the description:

 $N_{2}(g) + H_{2}(g) \rightarrow NH_{3}(g)$

Take an inventory of the atoms on the reactants and products:

Reactants	Products	Obviously, this isn't balanced since we have different numbers of atoms on the left and right!
2 N atoms	1 N atom	
2 H atoms	3 H atoms	

Let's just put a 2 in front of NH₃ to balance the N atoms first.

Write out the core of the equation from the description:

 $N_2(g) + H_2(g) \rightarrow 2 NH_3(g)$

Take an inventory of the atoms on the reactants and products:

Reactants	Products	Obviously, this isn't balanced since we have different numbers of atoms on the left and right!
2 N atoms	2 N atom	
2 H atoms	6 H atoms	

Let's just put a 2 in front of NH₃ to balance the N atoms first.

Write out the core of the equation from the description:

 $\underline{\qquad} \mathsf{N}_2(g) + \underline{\qquad} \mathsf{H}_2(g) \rightarrow \underline{\qquad} \mathsf{N}\mathsf{H}_3(g)$

Take an inventory of the atoms on the reactants and products:

Reactants	Products	Obviously, this isn't balanced since we have different numbers of atoms on the left and right!
2 N atoms	2 N atom	
2 H atoms	6 H atoms	
		Let's just put a 2 in front of NH ₃ to balance the N atoms first.

But, now our H atoms changed! Let's put a 3 in front of H_2 .

Write out the core of the equation from the description:

 $N_2(g)$ + 3 $H_2(g)$ \rightarrow 2 $NH_3(g)$

Take an inventory of the atoms on the reactants and products:

Reactants	Products	Obviously, this isn't balanced since we have different numbers of atoms on the left and right!
2 N atoms	2 N atom	
6 H atoms	6 H atoms	
		Let's just put a 2 in front of NH ₃ to balance the N atoms first.

But, now our H atoms changed! Let's put a 3 in front of H_2 .

Write out the core of the equation from the description:

 $1 \operatorname{N}_{2}(g) + 3 \operatorname{H}_{2}(g) \rightarrow 2 \operatorname{NH}_{3}(g)$

Take an inventory of the atoms on the reactants and products:

Reactants	Products	Obviously, this isn't balanced
2 N atoms	2 N atom	since we have different numbers
6 H atoms	6 H atoms	of atoms on the left and right!
		Let's just put a 2 in front of NH_3

Don't forget the 1 in front of N₂ though.

But, now our H atoms changed! Let's put a 3 in front of H_2 .

to balance the N atoms first.

Write out the core of the equation from the description:

 $1 \operatorname{N}_{2}(g) + 3 \operatorname{H}_{2}(g) \rightarrow 2 \operatorname{NH}_{3}(g)$

Take an inventory of the atoms on the reactants and products:

Reactants	Products	Obviously, this isn't balanced since we have different numbers of atoms on the left and right!
2 N atoms	2 N atom	
6 H atoms	6 H atoms	
		Let's just put a 2 in front of NH ₃

Don't forget the 1 in front of N₂ though.

But, now our H atoms changed! Let's put a 3 in front of H_2 .

to balance the N atoms first.

"To make 2 moles NH_3 , we need 1 mole N_2 and 3 moles H_2 ."

If 5.00 g of CH_4 (methane) is burned, what mass of water can be produced?

If 5.00 g of CH_4 (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

 $\underline{\qquad} \operatorname{CH}_{4}(g) + \underline{\qquad} \operatorname{O}_{2}(g) \rightarrow \underline{\qquad} \operatorname{CO}_{2}(g) + \underline{\qquad} \operatorname{H}_{2}\operatorname{O}(g)$

If 5.00 g of CH_4 (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

$$\operatorname{CH}_{4}\left(g
ight)$$
 + $\operatorname{O}_{2}\left(g
ight)$ \rightarrow $\operatorname{CO}_{2}\left(g
ight)$ + $\operatorname{H}_{2}\operatorname{O}\left(g
ight)$

Q: Mioy, I don't understand how you knew what reactants and products to write though? A: Good point! How did I know? When we "burn" a hydrocarbon (a compound with C, H, and/or O atoms), it <u>always</u> reacts with O_2 gas in the air to form CO_2 and H_2O gases as products.

If 5.00 g of CH_4 (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

 $\underline{\qquad} \operatorname{CH}_{4}(g) + \underline{\qquad} \operatorname{O}_{2}(g) \rightarrow \underline{\qquad} \operatorname{CO}_{2}(g) + \underline{\qquad} \operatorname{H}_{2}\operatorname{O}(g)$

Now balance the chemical equation above. Can you do it?

If 5.00 g of CH₄ (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

1 $CH_4(g)$ + 2 $O_2(g) \rightarrow 1 CO_2(g)$ + 2 $H_2O(g)$

Now the chemical equation above is balanced!

If 5.00 g of CH₄ (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

1 $CH_4(g)$ + 2 $O_2(g) \rightarrow 1 CO_2(g)$ + 2 $H_2O(g)$

Now the chemical equation above is balanced! "For every 1 mol CH_4 , we need to react with 2 mol O_2 to produce 1 mol CO_2 and 2 mol H_2O ."

If 5.00 g of CH₄ (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

1 $CH_4(g)$ + 2 $O_2(g) \rightarrow 1 CO_2(g)$ + 2 $H_2O(g)$

Now the chemical equation above is balanced! "For every 1 mol CH_4 , we need to react with 2 mol O_2 to produce 1 mol CO_2 and 2 mol H_2O ."

REMEMBER MY TIP: If you don't know how to start a problem, convert whatever they give you into moles first.

If 5.00 g of CH₄ (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

 $\frac{1}{2} \operatorname{CH}_{4}(g) + \underbrace{2}{2} \operatorname{O}_{2}(g) \rightarrow \underbrace{1}{2} \operatorname{CO}_{2}(g) + \underbrace{2}{2} \operatorname{H}_{2} \operatorname{O}(g)$

Now the chemical equation above is balanced! "For every 1 mol CH_4 , we need to react with 2 mol O_2 to produce 1 mol CO_2 and 2 mol H_2O ."

REMEMBER MY TIP: If you don't know how to start a problem, convert whatever they give you into moles first.

1. Use molar mass of CH_4 to convert from mass to moles.

 $5.00 \text{ g CH}_4 \times \frac{1 \text{ mol CH}_4}{16.04 \text{ g CH}_4} = 0.311_7 \text{ mol CH}_4$

If 5.00 g of CH₄ (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

 $\frac{1}{2} \operatorname{CH}_{4}(g) + \underbrace{2}{2} \operatorname{O}_{2}(g) \rightarrow \underbrace{1}{2} \operatorname{CO}_{2}(g) + \underbrace{2}{2} \operatorname{H}_{2} \operatorname{O}(g)$

Now the chemical equation above is balanced! "For every 1 mol CH_4 , we need to react with 2 mol O_2 to produce 1 mol CO_2 and 2 mol H_2O ."

REMEMBER MY TIP: If you don't know how to start a problem, convert whatever they give you into moles first.

1. Use molar mass of CH_4 to convert from mass to moles.

2. Use 2:1 $H_2O:CH_4$ mole-mole ratio to find moles of H_2O .

$$5.00 \text{ g CH}_4 \times \frac{1 \text{ mol CH}_4}{16.04 \text{ g CH}_4} = 0.311_7 \text{ mol CH}_4$$

$$0.311_7 \text{ mol CH}_4 \times \frac{2 \text{ mol H}_2 \text{O}}{1 \text{ mol CH}_4} = 0.623_4 \text{ mol H}_2 \text{O}$$

If 5.00 g of CH_4 (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

 $\frac{1}{2} \operatorname{CH}_{4}(g) + \underbrace{2}{2} \operatorname{O}_{2}(g) \rightarrow \underbrace{1}{2} \operatorname{CO}_{2}(g) + \underbrace{2}{2} \operatorname{H}_{2} \operatorname{O}(g)$

Now the chemical equation above is balanced! "For every 1 mol CH_4 , we need to react with 2 mol O_2 to produce 1 mol CO_2 and 2 mol H_2O ."

REMEMBER MY TIP: If you don't know how to start a problem, convert whatever they give you into moles first.

1. Use molar mass of CH_4 to convert from mass to moles.

2. Use 2:1 $H_2O:CH_4$ mole-mole ratio to find moles of H_2O .

3. Use molar mass of H_2O to convert from moles to mass.

5.00 g CH₄×
$$\frac{1 \text{ mol CH}_4}{16.04 \text{ g CH}_4}$$
 = 0.311₇ mol CH₄
0.311₇ mol CH₄× $\frac{2 \text{ mol H}_2 0}{1 \text{ mol CH}_4}$ = 0.623₄ mol H₂0
0.623₄ mol H₂0× $\frac{18.02 \text{ g H}_2 0}{1 \text{ mol H}_2 0}$ = 11.2 g H₂0

How many moles of oxygen gas are required to react completely with 2.0 moles of sugar crystals, C₁₂H₂₂O₁₁?

How many moles of oxygen gas are required to react completely with 2.0 moles of sugar crystals, C₁₂H₂₂O₁₁?

Write out the core of the equation from the description:

 $C_{12}H_{22}O_{11}(s) + O_{2}(g) \rightarrow CO_{2}(g) + H_{2}O(g)$

How many moles of oxygen gas are required to react completely with 2.0 moles of sugar crystals, C₁₂H₂₂O₁₁?

Write out the core of the equation from the description: $1 C_{12}H_{22}O_{11}(s) + 12 O_2(g) \rightarrow 12 CO_2(g) + 11 H_2O(g)$

Balance the equation above.

How many moles of oxygen gas are required to react completely with 2.0 moles of sugar crystals, C₁₂H₂₂O₁₁?

The balanced chemical equation is:

 $1 C_{12}H_{22}O_{11}(s) + 12 O_{2}(g) \rightarrow 12 CO_{2}(g) + 11 H_{2}O(g)$

"For every 1 mol $C_{12}H_{22}O_{11}$, we need to react with 12 mol O_2 to produce 12 mol CO_2 and 11 mol H_2O ."

How many moles of oxygen gas are required to react completely with 2.0 moles of sugar crystals, C₁₂H₂₂O₁₁?

The balanced chemical equation is:

 $1 C_{12}H_{22}O_{11}(s) + 12 O_{2}(g) \rightarrow 12 CO_{2}(g) + 11 H_{2}O(g)$

"For every 1 mol $C_{12}H_{22}O_{11}$, we need to react with 12 mol O_2 to produce 12 mol CO_2 and 11 mol H_2O ."

REMEMBER: We only care about the **ratio** of coefficients, so we can still use the mole-mole ratio to "go backwards."

2.0 mol
$$C_{12}H_{22}O_{11} \times \frac{12 \text{ mol } O_2}{1 \text{ mol } C_{12}H_{22}O_{11}} = 24 \text{ mol } O_2$$

A) Given 3.00 g Mg, how many moles of hydrochloric acid do we need?

+

B) If we produce 5.00 g H_2 gas, what mass of MgCl₂ solution is produced?

C) If we produce 4.00 g H_2 gas, what mass of HCl did we need?

 $Mg(s) + HCI(aq) \rightarrow MgCl_2(aq) + H_2(g)$

A) Given 3.00 g Mg, how many moles of hydrochloric acid do we need?

B) If we produce 5.00 g H_2 gas, what mass of MgCl₂ solution is produced?

C) If we produce 4.00 g H_2 gas, what mass of HCl did we need?

1 Mg (s) + 2 HCl $(aq) \rightarrow 1$ MgCl₂ (aq) + 1 H₂ (g)

A) Given 3.00 g Mg, how many moles of hydrochloric acid do we need?

B) If we produce 5.00 g H_2 gas, what mass of MgCl₂ solution is produced?

C) If we produce 4.00 g H_2 gas, what mass of HCl did we need?

1 Mg (s) + 2 HCl $(aq) \rightarrow 1$ MgCl₂ (aq) + 1 H₂ (g)

A) Given 3.00 g Mg, how many moles of hydrochloric acid do we need?

 $3.00 \text{ mol Mg} \times \frac{2 \text{ mol HCl}}{1 \text{ mol Mg}} = 6.00 \text{ mol HCl}$

B) If we produce 5.00 g H_2 gas, what mass of MgCl₂ solution is produced?

C) If we produce 4.00 g H_2 gas, what mass of HCl did we need?

1 Mg (s) + 2 HCl $(aq) \rightarrow 1$ MgCl₂ (aq) + 1 H₂ (g)

A) Given 3.00 g Mg, how many moles of hydrochloric acid do we need?

$$3.00 \text{ mol Mg} \times \frac{2 \text{ mol HCl}}{1 \text{ mol Mg}} = 6.00 \text{ mol HCl}$$

B) If we produce 5.00 g H_2 gas, what mass of MgCl₂ solution is produced?

 $5.00 \text{ g H}_2 \times \frac{1 \text{ mol H}_2}{2.016 \text{ g H}_2} \times \frac{1 \text{ mol MgCl}_2}{1 \text{ mol H}_2} \times \frac{95.21 \text{ g MgCl}_2}{1 \text{ mol MgCl}_2} = 236 \text{ g MgCl}_2$

C) If we produce 4.00 g H_2 gas, what mass of HCI did we need?

1 Mg (s) + 2 HCl $(aq) \rightarrow 1$ MgCl₂ (aq) + 1 H₂ (g)

A) Given 3.00 g Mg, how many moles of hydrochloric acid do we need?

$$3.00 \text{ mol Mg} \times \frac{2 \text{ mol HCl}}{1 \text{ mol Mg}} = 6.00 \text{ mol HCl}$$

B) If we produce 5.00 g H_2 gas, what mass of MgCl₂ solution is produced?

 $5.00 \text{ g H}_2 \times \frac{1 \text{ mol H}_2}{2.016 \text{ g H}_2} \times \frac{1 \text{ mol MgCl}_2}{1 \text{ mol H}_2} \times \frac{95.21 \text{ g MgCl}_2}{1 \text{ mol MgCl}_2} = 236 \text{ g MgCl}_2$

C) If we produce 4.00 g H_2 gas, what mass of HCI did we need?

$$4.00 \text{ g H}_2 \times \frac{1 \text{ mol H}_2}{2.016 \text{ g H}_2} \times \frac{2 \text{ mol HCl}}{1 \text{ mol H}_2} \times \frac{36.46 \text{ g HCl}}{1 \text{ mol HCl}} = 145 \text{ g HCl}$$

Dr. Mioy Huynh

REMEMBER THIS?

THE MOLE IS CENTRAL

SUMMARIZING STOICHIOMETRY RELATIONSHIPS

THE MOLE IS <u>STILL</u> CENTRAL

I hope now you understand why I say to convert to moles before you do anything else. It's because a balanced chemical equation gives us **mole-to-mole ratios** that we can use to convert between one reactant/product to another reactant/product.