ACIDS © BASES ACID-BASE TITRATIONS (NOTES)

CHEMISTRY 165 // SPRING 2020

Inventory of what we've covered so far

We have considered acids and bases separately:

$$
\mathrm{HA}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) \quad \mathrm{BOH}(\mathrm{aq}) \rightleftharpoons \mathrm{B}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

- We have considered mixing acids and bases together:

We have considered how aqueous salts (BA) can be acidic, basic, or neutral in water.

We have considered the mixture of weak acids/bases with salts to form buffers.

Now we will look into mixing acids and bases together more closely, through what we call acid-base titrations; namely, we are interested in how our pH changes as titrant is added to an acidic or basic solution.

You will find that titrations combine all of the concepts we've already discussed, so nothing "new" will pop up.

Titration curves

Titrating a weak acid (HCN) with a strong base ($\mathrm{NaOH} \rightarrow \mathbf{N a}^{+}+\mathrm{OH}^{-}$).

What's happening at point (1)?

We haven't added any base yet. At this point, we have just our weak acid (HCN).

What will the solution do at this point?

Well, HCN will dissociate a little (it's a weak acid) and reach equilibrium. So, set up an ICE chart:

	acid			conjugate-base	
	HCN	\rightleftharpoons	H^{+}	+	
CN^{-}					
I	$[\mathrm{HCN}]_{0}$		0		
C	-x		+x		
E	$[\mathrm{HCN}]_{0}-\mathrm{x}$		x		
		x			

Then, we can set up an expression for K_{a} to find pH .

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CN}^{-}\right]}{[\mathrm{HCN}]}=\frac{\mathrm{x}^{2}}{[\mathrm{HCN}]_{0}-\mathrm{x}} \rightarrow \mathrm{x}=\left[\mathrm{H}^{+}\right] \rightarrow \mathrm{pH}
$$

Titration curves

Titrating a weak acid (HCN) with a strong base ($\mathrm{NaOH} \rightarrow \mathbf{N a}^{+}+\mathrm{OH}^{-}$).

What's happening at point (2)?

We are now adding base. So we need to first consider the reaction between HCN and OH^{-}: $\mathrm{HCN}+\mathrm{Na}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}^{+}+\mathrm{CN}^{-}$
acid conjugate-base

	HCN	+	OH^{-}	\rightarrow
CN^{-}				
l	$\mathrm{n}_{\mathrm{HCN}}$		n_{OH}	
C	$-\mathrm{n}_{\mathrm{OH}}$		$-\mathrm{n}_{\mathrm{OH}}$	
F	$\mathrm{n}_{\mathrm{HCN}}-\mathrm{n}_{\mathrm{OH}}$		0	

Next, we need to consider the process of these new concentrations to reach equilibrium. But we can take a shortcut because we see that there is both HCN and CN^{-}in solution: it's a buffer!

So we can apply Henderson-Hasselbalch to find pH :

Volume NaOH added

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{CN}^{-}\right]}{[\mathrm{HCN}]}
$$

Titration curves

Titrating a weak acid (HCN) with a strong base ($\mathrm{NaOH} \rightarrow \mathbf{N a}^{+}+\mathrm{OH}^{-}$).

What's happening at point (3)?

We are at the equivalence point where $\mathrm{n}_{\mathrm{HCN}}=\mathrm{n}_{\mathrm{OH}}$. Again, we need to consider the reaction between HCN and OH^{-}but both react completely now!

$$
\mathrm{HCN}+\mathrm{Na}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}^{+}+\mathrm{CN}^{-}
$$

	HCN	+	OH^{-}	\rightarrow
CN^{-}				
l	$\mathrm{n}_{\mathrm{HCN}}$		n_{OH}	
C	$-\mathrm{n}_{\mathrm{OH}}$		$-\mathrm{n}_{\mathrm{OH}}$	
F	0		0	

Now what? Well, CN ${ }^{-}$is a (conjugate-)base, so it will accept a H^{+}from water via:

	CN^{-}	+	$\mathrm{H}_{2} \mathrm{O}$	\rightleftharpoons	HCN	+
I	$\left[\mathrm{CN}^{-}\right]$	-		0		0
C	-x	--		$+x$		$+x$
E	$\left[\mathrm{CN}^{-}\right]-\mathrm{x}$	--		x		x

$$
K_{\mathrm{b}}=\frac{[\mathrm{HCN}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CN}^{-}\right]}=\frac{\mathrm{x}^{2}}{\left[\mathrm{CN}^{-}\right]-\mathrm{x}} \rightarrow \mathrm{x}=\left[\mathrm{OH}^{-}\right] \rightarrow \mathrm{pH}
$$

Titration curves

Titrating a weak acid (HCN) with a strong base ($\mathrm{NaOH} \rightarrow \mathbf{N a}^{+}+\mathrm{OH}^{-}$).

What's happening at point (4)?

We are past the equivalence point and are now adding excess OH^{-}. Again, we need to consider the reaction between HCN and OH^{-}but HCN will be limiting now!

$\mathrm{HCN}+\mathrm{Na}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}^{+}+\mathrm{CN}^{-}$				
	HCN	+	OH^{-}	\rightarrow
CN^{-}				
I	$\mathrm{n}_{\mathrm{HCN}}$		n_{OH}	0
C	$-\mathrm{n}_{\mathrm{HCN}}$	$-\mathrm{n}_{\mathrm{HCN}}$	$+\mathrm{n}_{\mathrm{HCN}}$	
"E"	0	$\mathrm{n}_{\mathrm{OH}}-\mathrm{n}_{\mathrm{HCN}}$	$\mathrm{n}_{\mathrm{HCN}}$	

Because OH^{-}is a stronger base than CN^{-}, we need only consider its effect on pH :

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \rightarrow \mathrm{pH}=14-\mathrm{pOH}
$$

Volume NaOH added

Titration curves

Titrating a weak acid (HCN) with a strong base ($\mathrm{NaOH} \rightarrow \mathbf{N a}^{+}+\mathrm{OH}^{-}$).

RECAP

Volume NaOH added

At point (1): We haven't added any NaOH , so the pH comes from the weak acid equilibrium.

At point (2): This is called the midpoint because we have added exactly half of what we need to get to the equivalence point.

$$
\text { Here }[\mathrm{HCN}]=\left[\mathrm{CN}^{-}\right] \text {and } \mathrm{pH}=\mathrm{p} \mathrm{~K}_{\mathrm{a}} .
$$

Near point (2): This region is the buffer region, where we have HCN and CN^{-}in solution, so you can apply the Henderson-Hasselbalch equation to get pH .

At point (3): You add exactly $\mathrm{n}_{\mathrm{HCN}}=\mathrm{n}_{\mathrm{OH}}$ and make the salt NaCN . Here you only have the conjugatebase $\left(\mathrm{CN}^{-}\right)$reacting with water, which will determine the pH .

After point (3): You are adding excess OH , which will completely determine the pH .

