

CHEMISTRY 165 // SPRING 2020

Titration curves

Titrating a weak acid (HCN) with a strong base ($\mathrm{NaOH} \rightarrow \mathbf{N a}^{+}+\mathrm{OH}^{-}$).

RECAP

Volume NaOH added

At point (1): We haven't added any NaOH , so the pH comes from the weak acid equilibrium.

At point (2): This is called the midpoint because we have added exactly half of what we need to get to the equivalence point.

$$
\text { Here }[\mathrm{HCN}]=\left[\mathrm{CN}^{-}\right] \text {and } \mathrm{pH}=\mathrm{p} \mathrm{~K}_{\mathrm{a}} .
$$

Near point (2): This region is the buffer region, where we have HCN and CN^{-}in solution, so you can apply the Henderson-Hasselbalch equation to get pH .

At point (3): You add exactly $\mathrm{n}_{\mathrm{HCN}}=\mathrm{n}_{\mathrm{OH}}$ and make the salt NaCN . Here you only have the conjugatebase $\left(\mathrm{CN}^{-}\right)$reacting with water, which will determine the pH .

After point (3): You are adding excess OH , which will completely determine the pH .

PRACTICE PROBLEM 1

You have a 1.0 L solution of $0.50 \mathrm{M} \mathrm{HNO}_{2}\left(K_{\mathrm{a}}=4.0 \times 10^{-4}\right)$ being titrated with 0.50 M NaOH .
Calculate the pH of this solution initially, before any NaOH is added.

PRACTICE PROBLEM 1

You have a 1.0 L solution of $0.50 \mathrm{M} \mathrm{HNO}_{2}\left(K_{\mathrm{a}}=4.0 \times 10^{-4}\right)$ being titrated with 0.50 M NaOH .
Calculate the pH of this solution initially, before any NaOH is added.

- ansteer -

At this point, we have only the weak acid dissociating in water since no NaOH has been added.
Thus, we can set up the weak acid dissociation equilibrium in water.
We can construct an ICE chart for this equilibrium, set up a K_{a} expression, solve for x , and determine the pH .

	HNO_{2}	\rightleftharpoons	H^{+}	+	NO_{2}^{-}
I	0.50 M		0 M		0 M
C	-x		+x		+x
E	$0.50-\mathrm{x}$		x		x

Because the value of K_{a} is very small, we know that the system will undergo very little change (x value) toward the right in order to achieve equilibrium. In other words, we can take " x " to be very small/negligible and invoke the approximation that:

$$
0.50-x \approx 0.50
$$

PRACTICE PROBLEM 2

You have a 1.0 L solution of $0.50 \mathrm{M} \mathrm{HNO}_{2}\left(K_{\mathrm{a}}=4.0 \times 10^{-4}\right)$ being titrated with 0.50 M NaOH .
Calculate the pH of this solution after $250 . \mathrm{mL}$ of 0.50 M NaOH are added.

PRACTICE PROBLEM 2

You have a 1.0 L solution of $0.50 \mathrm{M} \mathrm{HNO}_{2}\left(K_{\mathrm{a}}=4.0 \times 10^{-4}\right)$ being titrated with 0.50 M NaOH .
Calculate the pH of this solution after $250 . \mathrm{mL}$ of 0.50 M NaOH are added.

- answer -

At this point, we have added some NaOH , which is a strong base, so remember: $\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$
First, determine how much OH^{-}we have added:

$$
n_{\mathrm{HNO}_{2}}=1.0 \mathrm{~L} \times \frac{0.50 \mathrm{~mol} \mathrm{HNO}_{2}}{1 \mathrm{~L}}=0.50 \mathrm{~mol} \mathrm{HNO}_{2} \quad n_{\mathrm{OH}^{-}}=0.250 \mathrm{~L} \times \frac{0.50 \mathrm{~mol} \mathrm{OH}^{-}}{1 \mathrm{~L}}=0.12_{5} \mathrm{~mol} \mathrm{OH}^{-}
$$

So we are not at the equivalence point and can use the Henderson-Hasselbach equation to find the pH .
Second, we need to consider the reaction between HNO_{2} and OH^{-}using an ICF chart:

	HNO_{2}	$+\mathrm{OH}^{-}$	\rightarrow	$\mathrm{NO}_{2}{ }^{-}$	+	$\mathrm{H}_{2} \mathrm{O}$	
	I 0.50 mol	$0.12{ }_{5} \mathrm{~mol}$		0 mol		n / a	
	C $\quad-0.12_{5}$	-0.125		+ 0.12_{5}		n / a	
	F 0.37_{5}	0		0.125		n / a	Use the Henderson-Hasselbalch equation to find pH.
Convert to M by dividing by $\mathrm{V}_{\text {tot }}=\mathbf{1 . 2 5} \mathrm{L}$	$\longrightarrow 0.300 \mathrm{M}$	OM		$0.10{ }_{0} \mathrm{M}$		n / a	$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}$
							$\begin{aligned} & =-\log \left(4.0 \times 10^{-4}\right)+\log \frac{\left[0.10_{0}\right]}{\left[0.30_{0}\right]} \\ & =3.39_{8}-0.47_{7} \\ \mathrm{pH} & =2.92 \end{aligned}$

PRACTICE PROBLEM3

You have a 1.0 L solution of $0.50 \mathrm{M} \mathrm{HNO}_{2}\left(K_{\mathrm{a}}=4.0 \times 10^{-4}\right)$ being titrated with 0.50 M NaOH . Calculate the pH of this solution after $500 . \mathrm{mL}$ of 0.50 M NaOH are added.

PRACTICE PROBLEM 3

You have a 1.0 L solution of $0.50 \mathrm{M} \mathrm{HNO}_{2}\left(K_{\mathrm{a}}=4.0 \times 10^{-4}\right)$ being titrated with 0.50 M NaOH .
Calculate the pH of this solution after $500 . \mathrm{mL}$ of 0.50 M NaOH are added.

- ans\%er -

At this point, we have added some NaOH , which is a strong base, so remember: $\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$
First, determine how much OH^{-}we have added:

$$
n_{\mathrm{HNO}_{2}}=1.0 \mathrm{~L} \times \frac{0.50 \mathrm{~mol} \mathrm{HNO}_{2}}{1 \mathrm{~L}}=0.50 \mathrm{~mol} \mathrm{HNO}_{2} \quad n_{\mathrm{OH}^{-}}=0.500 \mathrm{~L} \times \frac{0.50 \mathrm{~mol} \mathrm{OH}^{-}}{1 \mathrm{~L}}=0.25 \mathrm{~mol} \mathrm{OH}^{-}
$$

So we are not at the equivalence point and can use the Henderson-Hasselbalch equation to find the pH .
Second, we need to consider the reaction between HNO_{2} and OH^{-}using an ICF chart:

PRACTICE PROBLEM 4

You have a 1.0 L solution of $0.50 \mathrm{M} \mathrm{HNO}_{2}\left(K_{\mathrm{a}}=4.0 \times 10^{-4}\right)$ being titrated with 0.50 M NaOH .
Calculate the pH of this solution after $1000 . \mathrm{mL}$ of 0.50 M NaOH are added.

- anster -

PRACTICE PROBLEM 4

You have a 1.0 L solution of $0.50 \mathrm{M} \mathrm{HNO}_{2}\left(K_{\mathrm{a}}=4.0 \times 10^{-4}\right)$ being titrated with 0.50 M NaOH .
Calculate the pH of this solution after $1000 . \mathrm{mL}$ of 0.50 M NaOH are added.

- answer -

At this point, we have added some NaOH , which is a strong base, so remember: $\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$
First, determine how much OH^{-}we have added:

$$
n_{\mathrm{HNO}_{2}}=1.0 \mathrm{~L} \times \frac{0.50 \mathrm{~mol} \mathrm{HNO}_{2}}{1 \mathrm{~L}}=0.50 \mathrm{~mol} \mathrm{HNO}_{2} \quad n_{\mathrm{OH}^{-}}=1.000 \mathrm{~L} \times \frac{0.50 \mathrm{~mol} \mathrm{OH}^{-}}{1 \mathrm{~L}}=0.50 \mathrm{~mol} \mathrm{OH}^{-}
$$

We are at the equivalence point. Second, we need to consider the reaction between HNO_{2} and OH^{-}using an ICF chart:

$n_{\mathrm{OH}^{-}}=n_{\mathrm{HNO}_{2}}$		HNO_{2}	+	OH^{-}	\rightarrow	$\mathrm{NO}_{2}{ }^{-}$	+	$\mathrm{H}_{2} \mathrm{O}$
	I	0.50 mol		0.50 mol		0 mol		n/a
	C	- 0.50		- 0.50		$+0.50$		n/a
	F	0		0		0.50		n/a
Convert to M by dividing by $\mathbf{V}_{\text {tot }}=\mathbf{2 . 0 0 ~ L}$		0 M		0 M		0.25 M		n/a

Now we consider the weak-base $\left(\mathrm{NO}_{2}-\right)$ equilibrium:

	$\mathrm{NO}_{2}{ }^{-}$	+	$\mathrm{H}_{2} \mathrm{O}$	\rightleftharpoons	HNO_{2}	+	OH^{-}
I	0.25 M		n/a		0 M		0 M
C	- X		n/a		+ x		+ x
E	$0.25-\mathrm{x}$		n/a		X		X

First, find the K_{b} from the K_{a} and K_{w} :

$$
K_{\mathrm{b}}=\frac{K_{\mathrm{w}}}{K_{\mathrm{a}}}=\frac{1.0 \times 10^{-14}}{4.0 \times 10^{-4}}=2.5 \times 10^{-11}
$$

Set up a K_{b} expression and solve for x.

$$
\begin{aligned}
K_{\mathrm{b}} & =\frac{\left[\mathrm{HNO}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NO}_{2}^{-}\right]} \\
2.5 \times 10^{-11} & =\frac{(\mathrm{x})(\mathrm{x})}{0.25-\mathrm{x}} \\
2.5 \times 10^{-11} & \approx \frac{\mathrm{x}^{2}}{0.25} \\
\mathrm{x} & =2.5 \times 10^{-6} \mathrm{M}=\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

Now find pOH and pH :

$$
\begin{aligned}
\mathrm{pOH} & =-\log \left(2.5 \times 10^{-6}\right)=5.60_{2} \\
\mathrm{pH} & =14-5.60_{2}=8.40
\end{aligned}
$$

PRACTICE PROBLEM5

You have a 1.0 L solution of $0.50 \mathrm{M} \mathrm{HNO}_{2}\left(K_{\mathrm{a}}=4.0 \times 10^{-4}\right)$ being titrated with 0.50 M NaOH .
Calculate the pH of this solution after $1500 . \mathrm{mL}$ of 0.50 M NaOH are added.

- anster -

PRACTICE PROBLEM5

You have a 1.0 L solution of $0.50 \mathrm{M} \mathrm{HNO}_{2}\left(K_{\mathrm{a}}=4.0 \times 10^{-4}\right)$ being titrated with 0.50 M NaOH .
Calculate the pH of this solution after $1500 . \mathrm{mL}$ of 0.50 M NaOH are added.

- answer -

At this point, we have added a lot of NaOH , which is a strong base, so remember: $\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$
First, determine how much OH^{-}we have added:

$$
n_{\mathrm{HNO}_{2}}=1.0 \mathrm{~L} \times \frac{0.50 \mathrm{~mol} \mathrm{HNO}_{2}}{1 \mathrm{~L}}=0.50 \mathrm{~mol} \mathrm{HNO}_{2} \quad n_{\mathrm{OH}^{-}}=1.500 \mathrm{~L} \times \frac{0.50 \mathrm{~mol} \mathrm{OH}^{-}}{1 \mathrm{~L}}=0.75 \mathrm{~mol} \mathrm{oH}^{-}
$$

We are past the equivalence point. Second, we need to consider the reaction between HNO_{2} and OH^{-}using an ICF chart:

		HNO_{2}	+	OH^{-}	\rightarrow	$\mathrm{NO}_{2}{ }^{-}$	+	$\mathrm{H}_{2} \mathrm{O}$
	I	0.50 mol		0.75 mol		0 mol		n/a
	C	- 0.50		- 0.50		+ 0.50		n/a
	F	0		0.25		0.50		n/a
Convert to M by dividing by $V_{\text {tot }}=2.50 \mathrm{~L}$		OM		0.10 M		0.20 M		n/a

Because OH^{-}is a much stronger base than NO_{2}^{-}, we need only consider its effect on pH .

$$
\begin{aligned}
\mathrm{pOH} & =-\log (0.10)=1.00 \\
\mathrm{pH} & =14-1.00=13.00
\end{aligned}
$$

