Valence Bond Theory and Hybridization

DR. MIOY T. HUYNH YALE UNIVERSITY CHEMISTRY 161 FALL 2019

www.mioy.org/chem161

In both Lewis structures and VSEPR theory, we consider two atoms bonded if they share electrons.

In both Lewis structures and VSEPR theory, we consider two atoms bonded if they share electrons.

In fact, we specifically define the "shareable" electrons as the valence electrons (those in the outermost orbitals).

In both Lewis structures and VSEPR theory, we consider two atoms bonded if they share electrons.

In fact, we specifically define the "shareable" electrons as the valence electrons (those in the outermost orbitals).

In other words, C: 1s²2s²2p²

So we have 6 valence electrons, which we can use to form bonds.

In both Lewis structures and VSEPR theory, we consider two atoms bonded if they share electrons.

In fact, we specifically define the "shareable" electrons as the valence electrons (those in the outermost orbitals).

In other words, C: 1s²2s²2p²

So we have 6 valence electrons, which we can use to form bonds.

What happens when we form a molecule like CH_4 ?

At the moment, C looks like it only has 2 electrons in the 2p orbital to bond with.

Yet, the 4 H atoms in CH_4 bring 4 extra electrons (1s¹).

How then can we make sense of these 4 bonds that do form?

In valence bond theory, an atom's atomic orbitals hybridize to produce a set of hybridized orbitals that comprise chemical bonds.

In valence bond theory, an atom's atomic orbitals hybridize to produce a set of hybridized orbitals that comprise chemical bonds.

In the example of CH_4 , carbon's <u>one</u> 2s orbital and <u>three</u> 2p orbitals hybridize to form <u>four</u> new hybrid orbitals of type sp³.

In valence bond theory, an atom's atomic orbitals hybridize to produce a set of hybridized orbitals that comprise chemical bonds.

In the example of CH_4 , carbon's <u>one</u> 2s orbital and <u>three</u> 2p orbitals hybridize to form <u>four</u> new hybrid orbitals of type sp³.

The four new hybrid sp³ orbitals are equal in energy.

In valence bond theory, an atom's atomic orbitals hybridize to produce a set of hybridized orbitals that comprise chemical bonds.

In the example of CH_4 , carbon's <u>one</u> 2s orbital and <u>three</u> 2p orbitals hybridize to form <u>four</u> new hybrid orbitals of type sp³.

The four new hybrid sp³ orbitals are equal in energy.

Remember to fill in the hybrid orbitals like we normally do, fill 'up' across, then 'down'.

In valence bond theory, an atom's atomic orbitals hybridize to produce a set of hybridized orbitals that comprise chemical bonds.

In the example of CH_4 , carbon's <u>one</u> 2s orbital and <u>three</u> 2p orbitals hybridize to form <u>four</u> new hybrid orbitals of type sp³.

In valence bond theory, an atom's atomic orbitals hybridize to produce a set of hybridized orbitals that comprise chemical bonds.

In the example of CH_4 , carbon's <u>one</u> 2s orbital and <u>three</u> 2p orbitals hybridize to form <u>four</u> new hybrid orbitals of type sp³.

What do these four sp³ orbitals look like?

Consider VSEPR again where we said that electronpairs like to spread out to minimize interactions.

In valence bond theory, an atom's atomic orbitals hybridize to produce a set of hybridized orbitals that comprise chemical bonds.

In the example of CH_4 , carbon's <u>one</u> 2s orbital and <u>three</u> 2p orbitals hybridize to form <u>four</u> new hybrid orbitals of type sp³.

What do these four sp³ orbitals look like?

Consider VSEPR again where we said that electronpairs like to spread out to minimize interactions.

So, how would <u>four</u> orbitals spread out?

In valence bond theory, an atom's atomic orbitals hybridize to produce a set of hybridized orbitals that comprise chemical bonds.

In the example of CH_4 , carbon's <u>one</u> 2s orbital and <u>three</u> 2p orbitals hybridize to form <u>four</u> new hybrid orbitals of type sp³.

What do these four sp³ orbitals look like?

Consider VSEPR again where we said that electronpairs like to spread out to minimize interactions.

So, how would four orbitals spread out?

Like a tetrahedral!

In valence bond theory, an atom's atomic orbitals hybridize to produce a set of hybridized orbitals that comprise chemical bonds.

In the example of CH_4 , carbon's <u>one</u> 2s orbital and <u>three</u> 2p orbitals hybridize to form <u>four</u> new hybrid orbitals of type sp³.

What do these four sp³ orbitals look like?

Consider VSEPR again where we said that electronpairs like to spread out to minimize interactions.

So, how would four orbitals spread out?

Like a tetrahedral! Valence bond helps us to understand these molecular geometries.

In valence bond theory, an atom's atomic orbitals hybridize to produce a set of hybridized orbitals that comprise chemical bonds.

In the example of CH_4 , carbon's <u>one</u> 2s orbital and <u>three</u> 2p orbitals hybridize to form <u>four</u> new hybrid orbitals of type sp³.

So we have 4 hybrid sp³ orbitals on C that spread out like a tetrahedron.

In valence bond theory, an atom's atomic orbitals hybridize to produce a set of hybridized orbitals that comprise chemical bonds.

In the example of CH_4 , carbon's <u>one</u> 2s orbital and <u>three</u> 2p orbitals hybridize to form <u>four</u> new hybrid orbitals of type sp³.

So we have 4 hybrid sp³ orbitals on C that spread out like a tetrahedron.

What do the 4 H atoms bring to the table?

Each brings one electron:

Find the SN of the central atom → Determine hybridization [# of hybrid orbitals = # of mixed orbitals]

Find the SN of the central atom → Determine hybridization [# of hybrid orbitals = # of mixed orbitals]

```
SN = 4 \rightarrow sp<sup>3</sup> hybridization
4 sp<sup>3</sup> = 1 s + 3 p
```

(can only form σ bonds)

Find the SN of the central atom → Determine hybridization [# of hybrid orbitals = # of mixed orbitals]

Find the SN of the central atom → Determine hybridization [# of hybrid orbitals = # of mixed orbitals]

Determine the hybridization for each of the following central atoms.

Determine the hybridization for each of the following central atoms.

Determine the number of σ and π bonds in each structure.

Determine the number of σ and π bonds in each structure.

