Valence-Shell Electron-Pair Repulsion (VSEPR) Theory

DR. MIOY T. HUYNH
YALE UNIVERSITY
CHEMISTRY 161
FALL 2019

www.mioy.org/chem161

VSEPR Principles

1. Electrons are negatively charged.
2. Because of their negative charge, electrons want to spread out as much as possible. (i.e. they repel).
3. Valence electrons around a central atom minimize repulsion between themselves.

VSEPR Principles

1. Electrons are negatively charged.
2. Because of their negative charge, electrons want to spread out as much as possible. (i.e. they repel).
3. Valence electrons around a central atom minimize repulsion between themselves.

Imagine electron pairs (1L) as the yellow balloon-like lobes around a central atom A. If we had two electron pairs (1L, 1L), they would spread out linearly about A.

VSEPR Principles

1. Electrons are negatively charged.
2. Because of their negative charge, electrons want to spread out as much as possible. (i.e. they repel).
3. Valence electrons around a central atom minimize repulsion between themselves.

Imagine electron pairs (1L) as the yellow balloon-like lobes around a central atom A.
If we had two electron pairs (1L, 1L), they would spread out linearly about A.
If we had three electron pairs $(1 レ, 1$, 11$)$, they would spread out triangularly about A.

VSEPR Principles

1. Electrons are negatively charged.
2. Because of their negative charge, electrons want to spread out as much as possible. (i.e. they repel).
3. Valence electrons around a central atom minimize repulsion between themselves.

Imagine electron pairs (1L) as the yellow balloon-like lobes around a central atom A.
If we had two electron pairs (1l, 1l), they would spread out linearly about A.
If we had three electron pairs $(11,1 L, 1 L)$, they would spread out triangularly about A . If we had four electron pairs (1L, 1L, 1L), they would spread out tetrahedrally about A.

\# of electron pairs:
3
4

VSEPR Principles

1. Electrons are negatively charged.
2. Because of their negative charge, electrons want to spread out as much as possible. (i.e. they repel).
3. Valence electrons around a central atom minimize repulsion between themselves.

Imagine electron pairs (1L) as the yellow balloon-like lobes around a central atom A.
If we had two electron pairs (1l, 1l), they would spread out linearly about A.
If we had three electron pairs $(11,1 L, 1 L)$, they would spread out triangularly about A . If we had four electron pairs (1L, 1L, 1L), they would spread out tetrahedrally about A. If we had five electron pairs $(1 \mathrm{l}, 1 \mathrm{l}, 1 \downarrow)$, they would spread out bi-pyramidally about A .

VSEPR Principles

1. Electrons are negatively charged.
2. Because of their negative charge, electrons want to spread out as much as possible. (i.e. they repel).
3. Valence electrons around a central atom minimize repulsion between themselves.

Imagine electron pairs (1L) as the yellow balloon-like lobes around a central atom A.
If we had two electron pairs (1l, 1l), they would spread out linearly about A.
If we had three electron pairs $(11,1 L, 1 L)$, they would spread out triangularly about A . If we had four electron pairs (1L, 1L, 1L), they would spread out tetrahedrally about A. If we had five electron pairs $(1 \mathrm{l}, 1 \mathrm{l}, 1 \mathrm{l})$, they would spread out bi-pyramidally about A . If we had six electron pairs ($1 \mathrm{l}, 1 \mathrm{l}, 1 \mathrm{l}$), they would spread out octahedrally about A.

\# of electron pairs:

5

VSEPR Principles

1. Electrons are negatively charged.
2. Because of their negative charge, electrons want to spread out as much as possible. (i.e. they repel).
3. Valence electrons around a central atom minimize repulsion between themselves.

Imagine electron pairs (1L) as the yellow balloon-like lobes around a central atom A.
If we had two electron pairs (1l, 1l), they would spread out linearly about A.
If we had three electron pairs $(11,1 L, 1 L)$, they would spread out triangularly about A . If we had four electron pairs (1L, 1L, 1L), they would spread out tetrahedrally about A. If we had five electron pairs $(1 \mathrm{l}, 1 \mathrm{l}, 1 \mathrm{l})$, they would spread out bi-pyramidally about A . If we had six electron pairs ($1 \mathrm{l}, 1 \mathrm{l}, 1 \mathrm{l}$), they would spread out octahedrally about A.

\# of electron pairs:

5

What is an electron-pair anyway?

1. A lone pair on central atom $A \quad A \cdot \bullet$
2. An atom bonded to central atom $A \quad A-X$

What is an electron-pair anyway?

1. A lone pair on central atom $A \quad A \cdot \bullet$
2. An atom bonded to central atom $A \quad A-X$

The total number of electron-pairs about a central atom A is called the STERIC NUMBER (SN).

What is an electron-pair anyway?

1. A lone pair on central atom $A \quad A \cdot \bullet$
2. An atom bonded to central atom $A \quad A-X$

The total number of electron-pairs about a central atom A is called the STERIC NUMBER (SN).

Determine the SN for each:

$$
\begin{array}{lll}
\mathrm{SF}_{4} & \mathrm{H}_{2} \mathrm{O} & \mathrm{CH}_{4}
\end{array}
$$

$$
\mathrm{CO}_{2} \quad \mathrm{SO}_{2} \quad \mathrm{XeF}_{2}
$$

5

6

3

4

What is an electron-pair anyway?

1. A lone pair on central atom $A \quad A \cdot \bullet$
2. An atom bonded to central atom $A \quad A-X$

The total number of electron-pairs about a central atom A is called the STERIC NUMBER (SN).

Start by drawing the Lewis

structure for each

Determine the SN for each:

$$
\begin{array}{lll}
\mathrm{SF}_{4} & \mathrm{H}_{2} \mathrm{O} & \mathrm{CH}_{4}
\end{array}
$$

$$
\mathrm{CO}_{2} \quad \mathrm{SO}_{2} \quad \mathrm{XeF}_{2}
$$

What is an electron-pair anyway?

1. A lone pair on central atom $A \quad A \cdot \bullet$
2. An atom bonded to central atom $A \quad A-X$

The total number of electron-pairs about a central atom A is called the STERIC NUMBER (SN).

Start by drawing the Lewis
structure for each
molecule.

Determine the SN for each:

3

4

5

6

What is an electron-pair anyway?

1. A lone pair on central atom $A \quad A \cdot \circ$
2. An atom bonded to central atom $A \quad A-X$

The total number of electron-pairs about a central atom A is called the STERIC NUMBER (SN).

Start by drawing the Lewis structure for each molecule.

Then count number of lone pairs and bonded atoms about central atom \rightarrow SN

Determine the SN for each:

SF_{4}	$\mathrm{H}_{2} \mathrm{O}$	CH_{4}
	$\mathrm{H}-\mathrm{O}-\mathrm{H}$	
SN =	$\mathrm{SN}=$	SN =
CO_{2}	SO_{2}	XeF_{2}
$\stackrel{\mathrm{O}}{.}=\mathrm{C}=\stackrel{\square}{\mathrm{O}}$	$\ddot{\mathrm{O}}=\stackrel{\oplus}{\mathrm{S}}-\ddot{\mathrm{O}}-\stackrel{\Theta}{:}$: $\ddot{\mathrm{Br}}-\ddot{\mathrm{Xe}}$ - $-\ddot{\mathrm{Br}}$:
SN =	SN =	SN =

3

4

5

6

What is an electron-pair anyway?

1. A lone pair on central atom $A \quad A \cdot \bullet$
2. An atom bonded to central atom $A \quad A-X$

The total number of electron-pairs about a central atom A is called the STERIC NUMBER (SN).

Start by drawing the Lewis structure for each molecule.

Then count number of lone pairs and bonded atoms about central atom \rightarrow SN

Determine the SN for each:

SF_{4}	$\mathrm{H}_{2} \mathrm{O}$	CH_{4}
	$\mathrm{H}-\mathrm{O}-\mathrm{H}$	
SN = 5	SN = 4	SN = 4
CO_{2}	SO_{2}	XeF_{2}
$\ddot{\mathrm{O}}=\mathrm{C}=\ddot{\mathrm{O}}$	$\ddot{\mathrm{O}}=\stackrel{\oplus}{\mathrm{S}}-. \ddot{\mathrm{O}} \stackrel{\ominus}{:}$	$\ddot{\mathrm{Br}}-\ddot{\mathrm{x} e}-\ddot{\mathrm{B}} \mathrm{r}:$
SN = 2	SN = 3	SN $=5$

3

4

5

6

What is an electron-pair anyway?

1. A lone pair on central atom $A \quad A \cdot \bullet$
2. An atom bonded to central atom $A \quad A-X$

The total number of electron-pairs about a central atom A is called the STERIC NUMBER (SN).

What is an electron-pair anyway?

1. A lone pair on central atom $A \quad A \cdot \bullet$
2. An atom bonded to central atom A A-X

The total number of electron-pairs about a central atom A is called the STERIC NUMBER (SN).

LINEAR

TRIGONAL PLANAR

This information gives us the electron-pair geometry about the central atom (A).

TRIGONAL BIPYRAMID

OCTAHEDRAL

HOW TO FIND THE MOLECULAR GEOMETRY

Find the steric number (SN)
about the central atom.

Determine the molecular geometry of each:		
SF_{4}	$\mathrm{H}_{2} \mathrm{O}$	CH_{4}
	H-O-H	
SN = 5	SN = 4	SN = 4
CO_{2}	SO_{2}	XeBr 2
$\ddot{\mathrm{O}}=\mathrm{C}=\stackrel{\mathrm{O}}{\mathrm{O}}$	$\ddot{0}=\stackrel{\oplus}{\mathrm{S}}-. \ddot{\mathrm{O}} \stackrel{\ominus}{:}$	$\ddot{\mathrm{Br}}-\ddot{\mathrm{x} e}-\ddot{\mathrm{B}} \mathrm{\ddot{r}}:$
SN $=2$	SN = 3	SN $=5$

HOW TO FIND THE MOLECULAR GEOMETRY

Find the steric number (SN) about the central atom.

From the SN value, determine the electron-pair geometry.

Determine the molecular geometry of each:		
SF_{4}	$\mathrm{H}_{2} \mathrm{O}$	CH_{4}
	$\mathrm{H}-\mathrm{O} \mathrm{O}-\mathrm{H}$	
SN = 5	$\mathrm{SN}=4$	SN = 4
CO_{2}	SO_{2}	XeBr_{2}
$\ddot{\mathrm{O}}=\mathrm{c}=\ddot{\mathrm{O}}$	$\ddot{\mathrm{O}}=\stackrel{\oplus}{\mathrm{S}}-\ddot{\mathrm{O}} \stackrel{\ominus}{:}$	$\ddot{B r}-\ddot{x} e-\ddot{B r}:$
SN = 2	SN = 3	SN = 5

HOW TO FIND THE MOLECULAR GEOMETRY

Find the steric number (SN) about the central atom.

From the SN value, determine the electron-pair geometry.
\Rightarrow If no lone pairs, then electron-pair geometry = molecular geometry.

Determine the molecular geometry of each:		
SF_{4}	$\mathrm{H}_{2} \mathrm{O}$	CH_{4}
	$\mathrm{H}-\mathrm{O} \mathrm{O}-\mathrm{H}$	
SN = 5	SN = 4	SN = 4
CO_{2}	SO_{2}	XeBr 2
$\ddot{\mathrm{O}}=\mathrm{C}=\ddot{\mathrm{O}}$	$\ddot{\mathrm{O}}=\stackrel{\oplus}{\stackrel{-}{-}-\stackrel{\Theta}{\mathrm{O}}:}$	$: \ddot{B r}-\ddot{x} e-\ddot{B r}:$
SN = 2	SN = 3	SN = 5

HOW TO FIND THE MOLECULAR GEOMETRY

Find the steric number (SN) about the central atom.

From the SN value, determine the electron-pair geometry.
\Rightarrow If no lone pairs, then electron-pair geometry = molecular geometry.

Determine the molecular geometry of each:		
SF_{4}	$\mathrm{H}_{2} \mathrm{O}$	CH_{4}
	$\mathrm{H}-\mathrm{O} \mathrm{O}-\mathrm{H}$	
SN = 5	SN = 4	$\mathrm{SN}=4$, tetrahedral
CO_{2}	SO_{2}	XeBr 2
$\ddot{\mathrm{O}}=\mathrm{C}=\ddot{\mathrm{O}}$	$\ddot{\mathrm{O}}=\stackrel{\oplus}{\mathrm{S}}-\ddot{\mathrm{O}}:$: $\ddot{\mathrm{Br}}-\ddot{\mathrm{X}} \mathrm{e}-\ddot{\mathrm{Br}}$:
SN = 2, linear	SN = 3	SN $=5$

HOW TO FIND THE MOLECULAR GEOMETRY

Find the steric number (SN) about the central atom.

From the SN value, determine
the electron-pair geometry.

Determine the molecular geometry of each:		
SF_{4}	$\mathrm{H}_{2} \mathrm{O}$	CH_{4}
	$\mathrm{H}-\ddot{\mathrm{O}}-\mathrm{H}$	
SN $=5$	SN $=4$	$\mathrm{SN}=4$, tetrahedral
CO_{2}	SO_{2}	XeBr_{2}
$\ddot{\mathrm{O}}=\stackrel{180^{\circ}}{=}=\ddot{0}$	$\ddot{\mathrm{O}}=\stackrel{\oplus}{\mathrm{S}}-\ddot{\mathrm{O}} \stackrel{\ominus}{\mathrm{O}}$	$: \ddot{\mathrm{Br}}-\ddot{\mathrm{X}} \mathrm{e}-\ddot{\mathrm{Br}}:$
SN = 2, linear	SN = 3	SN $=5$

If no lone pairs, then electron-pair geometry = molecular geometry.

Let's redraw these to reflect the molecular geometry.

HOW TO FIND THE MOLECULAR GEOMETRY

Find the steric number (SN) about the central atom.

From the SN value, determine
the electron-pair geometry.

Determine the molecular geometry of each:

$$
\begin{gathered}
\mathrm{SN}=4 \\
\mathrm{SO}_{2} \\
\ddot{\mathrm{O}}=\stackrel{\oplus}{\mathrm{S}}-. . \stackrel{\Theta}{0}:
\end{gathered}
$$

SN = 2, linear
SN = 3
$\mathrm{SN}=5$

If no lone pairs, then electron-pair geometry = molecular geometry.

Let's redraw these to reflect the molecular geometry.
\Rightarrow If lone pairs, then place lone pair to minimize interactions.

And then find molecular geometry.

HOW TO FIND THE MOLECULAR GEOMETRY

Find the steric number (SN) about the central atom.

From the SN value, determine the electron-pair geometry.

Determine the molecular geometry of each:		
SF_{4}	$\mathrm{H}_{2} \mathrm{O}$	CH_{4}
	H-O.-H	
$\mathrm{SN}=5$	$\mathrm{SN}=4$	$\mathrm{SN}=4$, tetrahedral
CO_{2}	SO_{2}	XeBr ${ }_{2}$
$\ddot{\mathrm{O}}=\stackrel{180^{\circ}}{=}=\ddot{\mathrm{O}}$	$\ddot{\mathrm{O}}=\stackrel{\oplus}{\oplus}-\stackrel{\mathrm{O}}{\mathrm{o}}: \stackrel{\ominus}{:}$	$\ddot{B r}-\ddot{x}-\ddot{e}-\ddot{B r}:$
SN $=2$, linear	SN = 3	SN $=5$

If no lone pairs, then electron-pair geometry = molecular geometry.

Let's redraw these to reflect the molecular geometry.
\Rightarrow
If lone pairs, then place lone pair to minimize interactions.

And then find molecular geometry.

HOW TO FIND THE MOLECULAR GEOMETRY

Find the steric number (SN) about the central atom.

From the SN value, determine the electron-pair geometry.

Determine the molecular geometry of each:

$$
\mathrm{H}_{2} \mathrm{O}
$$

SN = 2, linear
$\mathrm{SN}=4$
SO_{2}

$\mathrm{SN}=3$

Determine the molecular geometry of each:		
SF_{4}	$\mathrm{H}_{2} \mathrm{O}$	CH_{4}
	$\mathrm{H}-\ddot{\mathrm{O}}-\mathrm{H}$	
$\mathrm{SN}=5$, see-saw	SN $=4$	$\mathrm{SN}=4$, tetrahedral
CO_{2}	SO_{2}	XeBr 2
$\ddot{\mathrm{O}}=\stackrel{180^{\circ}}{=}=\ddot{0}$	$\ddot{\mathrm{O}}=\stackrel{\oplus}{\mathrm{O}}-. .$	$: \ddot{B r}-\ddot{x} e-\ddot{B r}:$
SN = 2, linear	SN = 3	SN $=5$

If no lone pairs, then electron-pair geometry = molecular geometry.

Let's redraw these to reflect the molecular geometry.

If lone pairs, then place lone pair to minimize interactions.

And then find molecular geometry.

HOW TO FIND THE MOLECULAR GEOMETRY

Find the steric number (SN) about the central atom.

From the SN value, determine the electron-pair geometry.

Determine the molecular geometry of each:

$$
\mathrm{H}_{2} \mathrm{O}
$$

SN = 2, linear

$\mathrm{SN}=3$
$\mathrm{SN}=4$, tetrahedral

$$
\mathrm{XeBr}_{2}
$$

SN = 5

If no lone pairs, then electron-pair geometry = molecular geometry.

Let's redraw these to reflect the molecular geometry.
\Rightarrow
If lone pairs, then place lone pair to minimize interactions.

And then find molecular geometry.

SN = 4

HOW TO FIND THE MOLECULAR GEOMETRY

Find the steric number (SN) about the central atom.

From the SN value, determine the electron-pair geometry.

Determine the molecular geometry of each:

$$
\mathrm{H}_{2} \mathrm{O}
$$

$\mathrm{SN}=4$, bent
SO_{2}
0
$\mathrm{O}=\underbrace{}_{<120^{\circ}} \mathrm{S}^{\circ}$
$\mathrm{SN}=3$, bent
CH_{4}

$$
\begin{gathered}
\mathrm{SN}=4, \text { tetrahedral } \\
\mathrm{XeBr}_{2} \\
: \ddot{\mathrm{Br}}-\ddot{\mathrm{X}}-\ddot{\mathrm{B} r}: \\
\square \\
\mathrm{SN}=5
\end{gathered}
$$

If no lone pairs, then electron-pair geometry = molecular geometry.

Let's redraw these to reflect the molecular geometry.

If lone pairs, then place lone pair to minimize interactions.

And then find molecular geometry.

SN $=3$

HOW TO FIND THE MOLECULAR GEOMETRY

Find the steric number (SN) about the central atom.

From the SN value, determine the electron-pair geometry.

Determine the molecular geometry of each:

$$
\mathrm{H}_{2} \mathrm{O}
$$

$\mathrm{SN}=4$, bent
SO_{2}
0
$\mathrm{SN}=3$ < bent

$$
\mathrm{SN}=4, \text { tetrahedral }
$$

SN = 5, linear
CH_{4}

SN $=5$, see-saw

SN = 2, linear

If no lone pairs, then electron-pair geometry = molecular geometry.

Determine the molecular geometry of each:		
SF_{4}	$\mathrm{H}_{2} \mathrm{O}$	CH_{4}
SN = 5, see-saw	SN = 4, bent	SN $=4$, tetrahedral
CO_{2}	SO_{2}	XeBr 2
	0	
$\mathrm{O}=\mathrm{C}=\mathrm{O}$	$0=\frac{S}{420^{\circ}} \times$	
SN = 2, linear	SN = 3, bent	SN $=5$, linear

Let's redraw these to reflect the molecular geometry.
\Rightarrow
If lone pairs, then place lone pair to minimize interactions.

And then find molecular geometry.

