1. Consider the degradation of ammonia gas into nitrogen gas and hydrogen gas.

$$2 \text{ NH}_{3}(g) \rightarrow N_{2}(g) + 3 \text{ H}_{2}(g)$$

A) For the concentration vs. time plot to the right, label each curve with the appropriate chemical species.

Discuss how you chose each curve.

- B) At t = 500 s, the slope of a line tangent to the NH₃-curve is -1.94×10^{-6} M/s. What is the rate of the reaction at this instant?
- C) Compute the slopes of the tangent lines for the N_2 and H_2 -curves at t = 500 s.
- 2. The overall stoichiometry in parts A and B below is the same, but the rate laws differ.
 - A) Determine the rate law for the following reaction using the initial rates data.

 $2 \operatorname{NO} (g) + \operatorname{O}_2 (g) \rightarrow 2 \operatorname{NO}_2 (g)$

Experiment	[NO] ₀ (M)	$[O_2]_0(M)$	Initial Rate (M/s)
1	0.100	0.100	1.24
2	0.100	0.050	0.62
3	0.050	0.100	0.31

B) Determine the rate law for the following reaction using the initial rates data.

$$2 \operatorname{NO}(g) + \operatorname{Cl}_2(g) \rightarrow 2 \operatorname{NOCl}(g)$$

Experiment	$[NO]_{o}(M)$	$[Cl_{2}]_{0}(M)$	Initial Rate (M/s)
1	0.200	0.100	0.63
2	0.200	0.300	5.70
3	0.800	0.100	2.58

3. The following initial rate data was collected for the following chemical reaction:

$2 \text{ MnO}_4^-(aq) + 5 \text{ H}_2\text{C}_2\text{O}_4(aq) + 6 \text{ H}^+$	(aq) \rightarrow 2 Mn ²⁺ (aq)	$+ 10 \text{ CO}_2(g) + 8 \text{ H}_2 \text{O}(l)$
---	--	--

Experiment	$[MnO_{4}^{-}]_{0}(M)$	$[H_2C_2O_4]_0(M)$	$[H^{+}]_{0}(M)$	Initial Rate (M/s)
1	$1.0 imes 10^{-3}$	$1.0 imes 10^{-3}$	1.0	2.0×10^{-4}
2	$2.0 imes 10^{-3}$	$1.0 imes10^{-3}$	1.0	$8.0 imes 10^{-4}$
3	$2.0 imes 10^{-3}$	$2.0 imes 10^{-3}$	1.0	$1.6 imes 10^{-3}$
4	$2.0 imes 10^{-3}$	$2.0 imes 10^{-3}$	2.0	$3.2 imes 10^{-3}$

A) Determine the rate law for this reaction.

B) Determine the rate constant, including its units.

C) Predict the initial reaction rate if $[MnO_4^-]_0 = [H_2C_2O_4]_0 = [H^+]_0 = 1.5 \times 10^{-3} \text{ M}$?

4. Consider the following energy diagram.

A) Which letter corresponds to the activation energy for the reaction?

- Which letter corresponds to the position of an "activated complex" or "transition state?"
- C) Is this reaction exothermic or endothermic? Which letter helps you decide this?
- D) In the energy diagram above, draw a new label that corresponds to the activation energy for the reverse reaction. Label it "F".
- E) Is the activation energy in the reverse direction greater than or less than the activation energy for the forward reaction?