1. Consider the degradation of ammonia gas into nitrogen gas and hydrogen gas.

$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

A) For the concentration vs. time plot to the right, label each curve with the appropriate chemical species.

Discuss how you chose each curve.

B) At $t=500 \mathrm{~s}$, the slope of a line tangent to the NH_{3}-curve is $-1.94 \times 10^{-6} \mathrm{M} / \mathrm{s}$. What is the rate of the reaction at this instant?
C) Compute the slopes of the tangent lines for the $\mathrm{N}_{2}-$ and H_{2}-curves at $t=500 \mathrm{~s}$.
2. The overall stoichiometry in parts A and B below is the same, but the rate laws differ.
A) Determine the rate law for the following reaction using the initial rates data.

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

Experiment	$[\mathrm{NO}]_{\mathrm{o}}(\mathrm{M})$	$\left[\mathrm{O}_{2}\right]_{\mathrm{o}}(\mathrm{M})$	Initial Rate $(\mathrm{M} / \mathrm{s})$
1	0.100	0.100	1.24
2	0.100	0.050	0.62
3	0.050	0.100	0.31

B) Determine the rate law for the following reaction using the initial rates data.

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NOCl}(\mathrm{~g})
$$

Experiment	$[\mathrm{NO}]_{0}(\mathrm{M})$	$\left[\mathrm{Cl}_{2}\right]_{0}(\mathrm{M})$	Initial Rate $(\mathrm{M} / \mathrm{s})$
1	0.200	0.100	0.63
2	0.200	0.300	5.70
3	0.800	0.100	2.58

3. The following initial rate data was collected for the following chemical reaction:

$$
2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Mn}^{2+}(\mathrm{aq})+10 \mathrm{CO}_{2}(\mathrm{~g})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Experiment	$\left[\mathrm{MnO}_{4}^{-}\right]_{\mathrm{o}}(\mathrm{M})$	$\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]_{\mathrm{o}}(\mathrm{M})$	$\left[\mathrm{H}^{+}\right]_{\mathrm{o}}(\mathrm{M})$	Initial Rate $(\mathrm{M} / \mathrm{s})$
1	$1.0 \times 1 \mathrm{O}^{-3}$	1.0×10^{-3}	1.0	2.0×10^{-4}
2	2.0×10^{-3}	1.0×10^{-3}	1.0	8.0×10^{-4}
3	2.0×10^{-3}	2.0×10^{-3}	1.0	1.6×10^{-3}
4	2.0×10^{-3}	2.0×10^{-3}	2.0	3.2×10^{-3}

A) Determine the rate law for this reaction.
B) Determine the rate constant, including its units.
C) Predict the initial reaction rate if $\left[\mathrm{MnO}_{4}^{-}\right]_{\mathrm{o}}=\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]_{\mathrm{o}}=\left[\mathrm{H}^{+}\right]_{\mathrm{o}}=1.5 \times 1 \mathrm{o}^{-3} \mathrm{M}$?
4. Consider the following energy diagram.

A) Which letter corresponds to the activation energy for the reaction?
B) Which letter corresponds to the position of an "activated complex" or "transition state?"
C) Is this reaction exothermic or endothermic? Which letter helps you decide this?
D) In the energy diagram above, draw a new label that corresponds to the activation energy for the reverse reaction. Label it "F".
E) Is the activation energy in the reverse direction greater than or less than the activation energy for the forward reaction?

