1. Consider the degradation of ammonia gas into nitrogen gas and hydrogen gas.

$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

A) For the concentration vs. time plot to the right, label each curve with the appropriate chemical species.

Discuss how you chose each curve.
$\left[\mathrm{NH}_{3}\right]$ decreases over time.
[N_{2}] and $\left[\mathrm{H}_{2}\right]$ increase over time.
$\left[\mathrm{H}_{2}\right]$ increases more rapidly than $\left[\mathrm{N}_{2}\right]$.

B) At $t=500 \mathrm{~s}$, the slope of a line tangent to the NH_{3}-curve is $-1.94 \times 10^{-6} \mathrm{M} / \mathrm{s}$. What is the rate of the reaction at this instant?
Recall that the instantaneous relative rate of the reaction can be expressed as:

$$
\text { Rate }=-\frac{1}{2} \frac{\Delta\left[\mathrm{NH}_{3}\right]}{\Delta t}=\frac{\Delta\left[\mathrm{N}_{2}\right]}{\Delta t}=\frac{1}{3} \frac{\Delta\left[\mathrm{H}_{2}\right]}{\Delta t}
$$

The slope of the line tangent to the NH_{3}-curve tells us how $\left[\mathrm{NH}_{3}\right]$ changes with time, so the rate is

$$
\text { Rate }=-\frac{1}{2}\left(-1.94 \times 10^{-6} \frac{\mathrm{M}}{\mathrm{~s}}\right)=9.70 \times 10^{-7} \frac{\mathrm{M}}{\mathrm{~s}}
$$

C) Compute the slopes of the tangent lines for the $\mathrm{N}_{2}-$ and H_{2}-curves at $t=500 \mathrm{~s}$.

The instantaneous slopes will be related by the stoichiometry of the balanced chemical equation. Therefore, the slopes of $\left[\mathrm{N}_{2}\right]$ and $\left[\mathrm{H}_{2}\right]$ can be related to $\left[\mathrm{NH}_{3}\right]$ by

$$
\frac{\Delta\left[\mathrm{N}_{2}\right]}{\Delta t}=-\frac{1}{2} \frac{\Delta\left[\mathrm{NH}_{3}\right]}{\Delta t}=9.70 \times 10^{-7} \frac{\mathrm{M}}{\mathrm{~s}} \quad \frac{\Delta\left[\mathrm{H}_{2}\right]}{\Delta t}=-\frac{3}{2} \frac{\Delta\left[\mathrm{NH}_{3}\right]}{\Delta t}=2.91 \times 10^{-6} \frac{\mathrm{M}}{\mathrm{~s}}
$$

2. The overall stoichiometry in parts A and B below is the same, but the rate laws differ.
A) Determine the rate law for the following reaction using the initial rates data.

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

Experiment	$[\mathrm{NO}]_{0}(\mathrm{M})$	$\left[\mathrm{O}_{2}\right]_{0}(\mathrm{M})$	Initial Rate $(\mathrm{M} / \mathrm{s})$
1	0.100	0.100	1.24
2	0.100	0.050	0.62
3	0.050	0.100	0.31

Our rate law will have the form: Rate $=k[\mathrm{NO}]^{a}\left[\mathrm{O}_{2}\right]^{b}$
Compare experiments 1 and 3 to find a, the order of the reaction with respect to [NO]. Compare experiments 1 and 2 to find b, the order of the reaction with respect to $\left[\mathrm{O}_{2}\right]$.
Plug in the values from any one experiment (I choose \#1) to solve for k.

$$
\begin{aligned}
& \frac{\text { Rate }_{1}}{\text { Rate }_{3}}=\frac{k[\mathrm{NO}]_{1}^{a}\left[\mathrm{O}_{2}\right]_{1}^{b}}{k[\mathrm{NO}]_{3}^{a}\left[\mathrm{O}_{2}\right]_{3}^{b}} \quad \frac{\operatorname{Rate}_{1}}{\text { Rate }_{2}}=\frac{k[\mathrm{NO}]_{1}^{a}\left[\mathrm{O}_{2}\right]_{1}^{b}}{k[\mathrm{NO}]_{2}^{a}\left[\mathrm{O}_{2}\right]_{2}^{b}} \\
& \frac{\text { Rate }_{1}}{\text { Rate }_{3}}=\frac{[\mathrm{NO}]_{1}^{a}}{[\mathrm{NO}]_{3}^{a}} \quad \frac{\text { Rate }_{1}}{\text { Rate }_{2}}=\frac{\left[\mathrm{O}_{2}\right]_{1}^{b}}{\left[\mathrm{O}_{2}\right]_{2}^{b}} \\
& \frac{1.24 \frac{\mathrm{M}}{\mathrm{~S}}}{0.31 \frac{\mathrm{M}}{\mathrm{~S}}}=\left(\frac{0.100 \mathrm{M}}{0.050 \mathrm{M}}\right)^{a} \quad \frac{1.24 \frac{\mathrm{M}}{\mathrm{~s}}}{0.62 \frac{\mathrm{M}}{\mathrm{~S}}}=\left(\frac{0.100 \mathrm{M}}{0.050 \mathrm{M}}\right)^{b} \\
& 4=2^{a} \\
& 2=2^{b} \\
& b=1
\end{aligned}
$$

$$
\begin{aligned}
\text { Rate }_{1} & =k[\mathrm{NO}]_{1}^{2}\left[\mathrm{O}_{2}\right]_{1}^{1} \\
1.24 \frac{\mathrm{M}}{\mathrm{~s}} & =k(0.100 \mathrm{M})^{2}(0.100 \mathrm{M})^{1} \\
k & =1240 \mathrm{M}^{-2} \mathrm{~s}^{-1}
\end{aligned}
$$

Therefore, Rate $=k[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]^{1} ; k=1240 \mathrm{M}^{-3} \mathrm{~s}^{-1}$
B) Determine the rate law for the following reaction using the initial rates data.

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NOCl}(\mathrm{~g})
$$

Experiment	$[\mathrm{NO}]_{\mathrm{o}}(\mathrm{M})$	$\left[\mathrm{Cl}_{2}\right]_{\mathrm{o}}(\mathrm{M})$	Initial Rate $(\mathrm{M} / \mathrm{s})$
1	0.200	0.100	0.63
2	0.200	0.300	5.70
3	0.800	0.100	2.58

Our rate law will have the form: Rate $=k[\mathrm{NO}]^{a}\left[\mathrm{Cl}_{2}\right]^{b}$
Compare experiments 3 and 1 to find a, the order of the reaction with respect to [NO].
Compare experiments 2 and 1 to find b, the order of the reaction with respect to $\left[\mathrm{Cl}_{2}\right]$.
Plug in the values from any one experiment (I choose \#1) to solve for k.

$$
\begin{aligned}
& \frac{\text { Rate }_{3}}{\text { Rate }_{1}}=\frac{k[\mathrm{NO}]_{3}^{a}\left[\mathrm{Cl}_{2}\right]_{3}^{b}}{k[\mathrm{NO}]_{1}^{a}\left[\mathrm{Cl}_{2}\right]_{1}^{b}} \quad \frac{\operatorname{Rate}_{2}}{\operatorname{Rate}_{1}}=\frac{k[\mathrm{NO}]_{2}^{a}\left[\mathrm{Cl}_{2}\right]_{2}^{b}}{k[\mathrm{NO}]_{1}^{a}\left[\mathrm{Cl}_{2}\right]_{1}^{b}} \quad \begin{aligned}
& \text { Rate }_{1}=k[\mathrm{NO}]_{1}^{1}\left[\mathrm{Cl}_{2}\right]_{1}^{2} \\
& M
\end{aligned} \\
& \frac{\text { Rate }_{3}}{\text { Rate }_{1}}=\frac{\left[\mathrm{NO}_{3}^{a}\right.}{[\mathrm{NO}]_{1}^{a}} \quad \frac{\text { Rate }_{2}}{\text { Rate }_{1}}=\frac{\left[\mathrm{Cl}_{2}\right]_{2}^{b}}{\left[\mathrm{Cl}_{2}\right]_{1}^{b}} \\
& \begin{aligned}
0.63 \frac{\mathrm{M}}{\mathrm{~S}} & =k(0.200 \mathrm{M})^{1}(0.100 \mathrm{M})^{2} \\
k & =320 \mathrm{M}^{-2} \mathrm{~S}^{-1}
\end{aligned} \\
& \frac{2.58 \frac{\mathrm{M}}{\mathrm{~s}}}{0.63 \frac{\mathrm{M}}{\mathrm{~S}}}=\left(\frac{0.800 \mathrm{M}}{0.200 \mathrm{M}}\right)^{a} \\
& \frac{5.70 \frac{\mathrm{M}}{\mathrm{~s}}}{0.63 \frac{\mathrm{M}}{\mathrm{~S}}}=\left(\frac{0.300 \mathrm{M}}{0.100 \mathrm{M}}\right)^{b} \\
& 9=3^{b} \\
& a=1 \\
& b=2 \\
& \text { If expt. } 2 \text { or 3: } \\
& k=315 \mathrm{M}^{-2} \mathrm{~s}^{-1}
\end{aligned}
$$

Therefore, Rate $=k[\mathrm{NO}]^{1}\left[\mathrm{Cl}_{2}\right]^{2} ; k=320 \mathrm{M}^{-2} \mathrm{~s}^{-1}$ or $315 \mathrm{M}^{-2} \mathrm{~s}^{-1}$

