1. Experimental data for the one-step reaction $\mathrm{A} \rightarrow \mathrm{B}+\mathrm{C}$ have been plotted in three different ways:
(i) $\frac{1}{[A]}$ vs. time, which gives a straight line with a positive slope
(ii) $[A]$ vs. time, which gives a curved line
(iii) $\ln [A]$ vs. time, which gives a curved line

Based on this information, write the rate law for this reaction and determine the units of k.
2. The decomposition of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ on an alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ surface was studied at 400 K .

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

You plot the $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]$ vs. time and obtain a straight-line relationship (shown to the right) with a slope of $-4.00 \times 10^{-5} \mathrm{M} / \mathrm{s}$.

A) What is the half-life if the initial concentration of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ is $1.25 \times 10^{-2} \mathrm{M}$?
B) Determine the time required for $1.25 \times 10^{-2} \mathrm{M} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ to completely decompose?
3. The activation energy for the following reaction is $E_{\mathrm{a}}=32 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta E=-17 \mathrm{~kJ} / \mathrm{mol}$.

$$
\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Assuming this is a single-step reaction, draw and label an energy diagram for this reaction and calculate the activation energy for the reverse reaction $\left(E_{\mathrm{a}}{ }^{\prime}\right)$.
4. Consider the following reaction again:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

A) Determine the rate law for the reaction using the initial rates data collected at 298 K .

Experiment	$[\mathrm{NO}]_{0}(\mathrm{M})$	$\left[\mathrm{O}_{2}\right]_{0}(\mathrm{M})$	Initial Rate $(\mathrm{M} / \mathrm{s})$
1	0.10	0.20	4.1×10^{2}
2	0.20	0.10	8.2×10^{2}
3	0.10	0.30	6.15×10^{2}

B) Which of the following are valid mechanisms for the reaction above?

Mechanism 1:	step 1)	$\mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}(\mathrm{g})$	(slow) step 2)
$\mathrm{NO}(\mathrm{g})+\mathrm{O}(\mathrm{g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})$	(fast)		
Mechanism 2:	step 1)	$2 \mathrm{NO}(\mathrm{g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g})$	(fast)
	step 2)	$\mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$	(slow)
Mechanism 3:	step 1)	$2 \mathrm{NO}(\mathrm{g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$	(fast)
	step 2)	$\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$	(slow)
Mechanism 4:	step 1)	$\mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}_{3}(\mathrm{~g})$	(fast)
	step 2)	$\mathrm{NO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$	(slow)
Mechanism 5:	step 1)	$2 \mathrm{NO}^{(\mathrm{g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g})}$	(fast)
	step 2)	$\mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{N}(\mathrm{g})$	(slow)
	step 3)	$\mathrm{N}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})$	(fast)

5. Consider the hydrolysis of urea (reaction below):

$$
\mathrm{H}_{2} \mathrm{NCONH}_{2}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})
$$

A) You find the activation energy for the uncatalyzed reaction to be $138 \mathrm{~kJ} / \mathrm{mol}$. Calculate the rate constant ($k_{\text {uncat }}$) for the uncatalyzed reaction at $37.0^{\circ} \mathrm{C}$ assuming A $=8.66 \times 1 \mathrm{O}^{12} \mathrm{~s}^{-1}$.
B) You find the activation energy for the catalyzed reaction to be $38.0 \mathrm{~kJ} / \mathrm{mol}$ with the enzyme urease present. Calculate the rate constant ($k_{\text {cat }}$) for the catalyzed reaction at $37.0^{\circ} \mathrm{C}$ assuming $\mathrm{A}=8.66 \times 1 \mathrm{O}^{12} \mathrm{~s}^{-1}$.
C) Calculate the temperature, theoretically, to which you would need to heat the uncatalyzed reaction to in order for the rate of the uncatalyzed reaction to be equal to the rate of the catalyzed reaction at $37.0^{\circ} \mathrm{C}$.

Assume the overall rate order, concentrations, and frequency factor (A) are constant between the catalyzed and uncatalyzed reactions.

