1. What is the mass of $5.00 \times 10_{20}$ atoms of Cr ?

$$
5.00 \times 10^{20} \text { atoms } \mathrm{Cr} \times \frac{1 \mathrm{~mol} \mathrm{Cr}}{6.022 \times 10^{23} \text { atoms } \mathrm{Cr}} \times \frac{52.00 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{Cr}}=4.32 \times 10^{-2} \mathrm{~g}
$$

2. How many moles are in a 50.0 g sample of ammonium carbonate?

$$
50.0 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}{96.094 \mathrm{~g}}=0.520 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}
$$

3. What is the mass of one molecule of dinitrogen tetroxide?

$$
1 \text { molecule } \mathrm{N}_{2} \mathrm{O}_{4} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}}{6.022 \times 10^{23} \text { molecules } \mathrm{N}_{2} \mathrm{O}_{4}} \times \frac{92.02 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}}=1.528 \times 10^{-22} \mathrm{~g}
$$

4. Balance the following two reactions.

5. A compound is composed of only C, H, and N atoms.
A) Determine the empirical formula if the compound is found to be $74.1 \% \mathrm{C}$ and $8.70 \% \mathrm{H}$ by mass.

Convert percentages to masses assuming 100 g of $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{y} \mathrm{O}_{\mathrm{z}}$ sample. Convert from masses to moles of each element. Then divide by the smallest mole amount (1.228 mol O) to get mole ratio.

$$
\begin{array}{ccc}
74.1 \mathrm{~g} \mathrm{C} & \rightarrow 6.169 \mathrm{~mol} \mathrm{C} & \sim 5 \mathrm{~mol} \mathrm{C} \\
8.70 \mathrm{~g} \mathrm{H} & \rightarrow 8.632 \mathrm{~mol} \mathrm{H} & \rightarrow \begin{array}{c}
\sim 7 \mathrm{~mol} \mathrm{H} \\
17.2 \mathrm{~g} \mathrm{~N}
\end{array} \rightarrow 1.228 \mathrm{~mol} \mathrm{~N} \\
1 \mathrm{~mol} \mathrm{~N}
\end{array}
$$

$$
\left.\rightarrow \mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N} \text { (molar mass }=81.116 \mathrm{~g} / \mathrm{mol}\right)
$$

B) If the mass of 0.123 moles of the compound has a mass of 19.94 g , what is the molecular formula of the compound?

Recognize molecular mass as 19.94 g per 0.123 moles $=162.11 \mathrm{~g} / \mathrm{mol}$

Then, take the ratio between the molecular and empirical mass to extract $n,\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}\right)_{n}$:

$$
n=\frac{162.11 \mathrm{~g} / \mathrm{mol}}{81.116 \mathrm{~g} / \mathrm{mol}} \approx 2
$$

Final answer: $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}$
6. You react 10.0 g of hydrogen gas with 60.0 g of oxygen gas to form water vapor. How much water can be formed from this reaction?

Balanced chemical equation: $\quad 2 \mathrm{H}_{2}(g)+1 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Now, determine limiting reactant is O_{2} :

Method 1:
How much $\mathrm{H}_{2} \mathrm{O}$ can we make from all H_{2} ?
$10.0 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}_{2}}=4.96 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
How much $\mathrm{H}_{2} \mathrm{O}$ can we make from all O_{2} ?
$60.0 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{32.00 \mathrm{~g} \mathrm{O}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}_{2}}=3.75 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
Therefore, O_{2} is limiting (makes less $\mathrm{H}_{2} \mathrm{O}$)!

Method 2:
We have $4.96 \mathrm{~mol} \mathrm{H}_{2}$ and 1.875 mol O . How much H_{2} do we need to react with all of the O_{2} ?

$$
60.0 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{32.00 \mathrm{~g} \mathrm{O}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}=3.75 \mathrm{~mol} \mathrm{H}_{2}
$$

We need $3.75 \mathrm{~mol} \mathrm{H}_{2}$, but have $4.96 \mathrm{~mol} \mathrm{H}_{2}$, so H_{2} is in excess.
Therefore, O_{2} is limiting!

From method 1 above, we can make $3.75 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ or (67.6 g).
7. Solid iron(III) oxide reacts with carbon monoxide to form elemental iron and carbon dioxide gas.
A) Write a balanced chemical equation for the reaction described above.

$$
_1 _\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+_3 _\mathrm{CO}(\mathrm{~g}) \rightarrow _2 _\mathrm{Fe}(\mathrm{~s})+\ldots 3 _\mathrm{CO}_{2}(\mathrm{~g})
$$

B) How much iron metal is obtained if 433.2 g of iron(III) oxide reacts with $250 . \mathrm{L}$ of carbon monoxide (density of carbon monoxide is $1.145 \mathrm{~g} / \mathrm{L}$).

Determine limiting reactant is $\mathrm{Fe}_{2} \mathrm{O}_{3}$ through $1: 3$ mole ratio ($2.7128 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$ and 10.22 mol CO). Determine how much $\mathrm{Fe}(s)$ can be produced from the limiting reactant:

$$
433.2 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3} \times \frac{1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}}{159.687 \mathrm{~g}} \times \frac{2 \mathrm{~mol} \mathrm{Fe}}{1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}}=5.426 \mathrm{~mol} \mathrm{Fe}(\text { or } 303.0 \mathrm{~g} \mathrm{Fe})
$$

C) How much starting material would be left over after the reaction is complete?

No $\mathrm{Fe}_{2} \mathrm{O}_{3}$ leftover because it is the limiting reactant.

$$
\begin{gathered}
433.2 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3} \times \frac{1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}}{159.687 \mathrm{~g}} \times \frac{3 \mathrm{~mol} \mathrm{CO}}{1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}} \times \frac{28.011 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{CO}} \times \frac{1 \mathrm{~L} \mathrm{CO}}{1.145 \mathrm{~g}}=199.096 \mathrm{~L} \mathrm{CO} \text { used } \\
250 . \mathrm{L}-199.096 \mathrm{~L}=51 \mathrm{~L} \mathrm{CO} \text { left }
\end{gathered}
$$

8. If you have equal mass samples of each of the following compounds, which sample contains the greatest number of oxygen atoms?

$$
\begin{array}{cc}
\mathrm{H}_{2} \mathrm{SO}_{4} & \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \\
\frac{4 \times 16.00 \mathrm{~g}}{98.076 \mathrm{~g}} \times 100=62.26 \% & \frac{11 \times 16.00 \mathrm{~g}}{342.296 \mathrm{~g}} \times 100=51.42 \%
\end{array} \frac{3 \times 16.00 \mathrm{~g}}{122.55 \mathrm{~g}} \times 100=39.17 \%
$$

Since masses are the same, the mass percent of O will be an indication of O atoms in the samples. Therefore, $\mathrm{H}_{2} \mathrm{SO}_{4}$ contains the greatest number of O atoms.

Note: You can also solve this by assuming an arbitrary mass (e.g. 100 g) of each, then determining the number of O atoms through dimensional analysis.

