1. A gaseous chemical equilibrium has an equilibrium constant with the following form.

$$
K_{\mathrm{p}}=\frac{P_{\mathrm{HI}}^{2}}{P_{\mathrm{H}_{2}} P_{\mathrm{I}_{2}}}
$$

A) Write a balanced chemical equation for this equilibrium.
B) Write an expression for K_{c} and determine the relationship between K_{p} and K_{c}.
C) A container holds $\left[\mathrm{H}_{2}\right]=2.95 \times 10^{-3} \mathrm{M},\left[\mathrm{I}_{2}\right]=5.22 \times 10^{-4} \mathrm{M}$, and $[\mathrm{HI}]=1.95 \times 10^{-3} \mathrm{M}$ at $25^{\circ} \mathrm{C}$. If $K_{\mathrm{c}}=48.8$ at $25^{\circ} \mathrm{C}$, in which direction will the reaction proceed in the container?
2. In the lab you synthesize green crystals of trihydrate potassium ferrioxalate $\left(\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}\right)$ from aqueous solutions of FeCl_{3} and $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$. Recrystallization from a saturated aqueous solution of your products is a commonly used technique to purify your desired products.
A) Write a solubility product equilibrium constant for the following dissolution:

$$
\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}(s) \rightleftharpoons 3 \mathrm{~K}^{+}(\mathrm{aq})+\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

B) If cooling the saturated solution results in solid crystal formation, the dissolution of the $\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ is ...

Endothermic Exothermic
3. Consider the following aqueous equilibrium:

$$
\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{SCN}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{FeSCN}^{2+}(\mathrm{aq}) \quad K_{\mathrm{c}}=148 \text { at } 298 \mathrm{~K}
$$

In which direction will the equilibrium shift if ...
A) Water is added such that the total volume is doubled
B) NaOH is added
C) $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ is added
4. Consider the reaction between phosphorus(III) chloride and chlorine gas to produce phosphorus(V) chloride.

$$
\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{5}(\mathrm{~g}) \quad K_{\mathrm{p}}=24.2 \text { at } 523 \mathrm{~K}
$$

A) A 1.00 L container at constant temperature contains $P_{\mathrm{PCl}_{3}}=1.5 \mathrm{~atm}, P_{\mathrm{Cl}_{2}}=0.72 \mathrm{~atm}$, and $P_{\mathrm{PCl}_{5}}=0 \mathrm{~atm}$ initially. Calculate the partial pressures of each gas at equilibrium.
B) Describe some ways in which we can increase the yield of $\mathrm{PCl}_{5}(\mathrm{~g})$.
C) The energy diagram for the reaction is shown below. Determine how the number of moles of PCl_{5} at equilibrium would change if system were heated.

5. Consider the following weak-acid equilibrium.

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \quad K_{\mathrm{a}}=1.76 \times 1 \mathrm{o}^{-5} \text { at } 298 \mathrm{~K}
$$

Calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$at equilibrium if the initial concentration of CH 3 COOH is 1.59 M .

