1. A gaseous chemical equilibrium has an equilibrium constant with the following form.

$$K_{\rm p} = \frac{P_{\rm HI}^2}{P_{\rm H_2} P_{\rm I_2}}$$

- A) Write a balanced chemical equation for this equilibrium.
- B) Write an expression for K_c and determine the relationship between K_p and K_c .

C) A container holds $[H_2] = 2.95 \times 10^{-3} \text{ M}$, $[I_2] = 5.22 \times 10^{-4} \text{ M}$, and $[HI] = 1.95 \times 10^{-3} \text{ M}$ at 25 °C. If $K_c = 48.8$ at 25 °C, in which direction will the reaction proceed in the container?

- 2. In the lab you synthesize green crystals of trihydrate potassium ferrioxalate $(K_3[Fe(C_2O_4)_3]\cdot 3H_2O)$ from aqueous solutions of $FeCl_3$ and $K_2C_2O_4$. Recrystallization from a saturated aqueous solution of your products is a commonly used technique to purify your desired products.
 - A) Write a solubility product equilibrium constant for the following dissolution:

$$K_3[Fe(C_2O_4)_3]\cdot 3H_2O(s) \rightleftharpoons 3K^+(aq) + [Fe(C_2O_4)_3]^{3-}(aq) + 3H_2O(l)$$

B) If cooling the saturated solution results in solid crystal formation, the dissolution of the $K_3[Fe(C_2O_4)_3]\cdot 3H_2O$ is ...

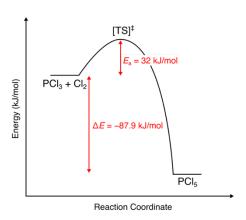
Endothermic

Exothermic

3. Consider the following aqueous equilibrium:

$$Fe^{3+}$$
 (aq) + SCN^{-} (aq) $\rightleftharpoons FeSCN^{2+}$ (aq) $K_c = 148$ at 298 K

In which direction will the equilibrium shift if ...


- A) Water is added such that the total volume is doubled
- B) NaOH is added
- C) $Fe(NO_3)_3$ is added

4. Consider the reaction between phosphorus(III) chloride and chlorine gas to produce phosphorus(V) chloride.

$$PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$$
 $K_p = 24.2 \text{ at } 523 \text{ K}$

A) A 1.00 L container at constant temperature contains $P_{PCl_3} = 1.5$ atm, $P_{Cl_2} = 0.72$ atm, and $P_{PCl_5} = 0$ atm initially. Calculate the partial pressures of each gas at equilibrium.

- B) Describe some ways in which we can increase the yield of PCl₅ (g).
- C) The energy diagram for the reaction is shown below. Determine how the number of moles of PCl₅ at equilibrium would change if system were heated.

5. Consider the following weak-acid equilibrium.

CH₃COOH (aq) + H₂O (l) \rightleftharpoons CH₃COO⁻ (aq) + H₃O⁺ (aq) $K_a = 1.76 \times 10^{-5}$ at 298 K Calculate [H₃O⁺] at equilibrium if the initial concentration of CH₃COOH is 1.59 M.