1. A gaseous chemical equilibrium has an equilibrium constant with the following form.

$$
K_{\mathrm{p}}=\frac{P_{\mathrm{HI}}^{2}}{P_{\mathrm{H}_{2}} P_{\mathrm{I}_{2}}}
$$

A) Write a balanced chemical equation for this equilibrium.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

B) Write an expression for K_{c} and determine the relationship between K_{p} and K_{c}.

$$
K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}
$$

Use ideal gas law: $\Delta n=0$

$$
[\mathrm{x}]=\frac{n_{\mathrm{x}}}{V}=\frac{P_{\mathrm{x}}}{R T} \rightarrow K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{P_{\mathrm{HI}}^{2}}{P_{\mathrm{H}_{2}} P_{\mathrm{I}_{2}}} \times\left(\frac{1}{R T}\right)^{\Delta n}=K_{\mathrm{p}}
$$

C) A container holds $\left[\mathrm{H}_{2}\right]=2.95 \times 10^{-3} \mathrm{M},\left[\mathrm{I}_{2}\right]=5.22 \times 10^{-4} \mathrm{M}$, and $[\mathrm{HI}]=1.95 \times 10^{-3} \mathrm{M}$ at $25{ }^{\circ} \mathrm{C}$. If $K_{\mathrm{c}}=48.8$ at $25^{\circ} \mathrm{C}$, in which direction will the reaction proceed in the container?

Determine the reaction quotient (Q):

$$
Q=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{\left(1.95 \times 10^{-3}\right)^{2}}{\left(2.95 \times 10^{-3}\right)\left(5.22 \times 10^{-4}\right)}=2.47
$$

Because $Q<K$, the reaction will shift toward the right or products side (HI).
2. In the lab you synthesize green crystals of trihydrate potassium ferrioxalate $\left(\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}\right)$ from aqueous solutions of FeCl_{3} and $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$. Recrystallization from a saturated aqueous solution of your products is a commonly used technique to purify your desired products.
A) Write a solubility product equilibrium constant for the following dissolution:

$$
\begin{gathered}
\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightleftharpoons 3 \mathrm{~K}^{+}(\mathrm{aq})+\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
K_{\mathrm{sp}}=\left[\mathrm{K}^{+}\right]^{3}\left[\left\{\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right\}^{3-}\right]
\end{gathered}
$$

B) If cooling the saturated solution results in solid crystal formation, the dissolution of the $\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ is ...

Endothermic Exothermic

If cooling shifts the equilibrium to the left, then heat must be a "reactant."
Therefore, this reaction is endothermic: $\Delta H>0$.
3. Consider the following aqueous equilibrium:

$$
\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{SCN}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{FeSCN}^{2+}(\mathrm{aq}) \quad K_{\mathrm{c}}=148 \text { at } 298 \mathrm{~K}
$$

In which direction will the equilibrium shift if ...
A) Water is added such that the total volume is doubled Left toward reactants
B) NaOH is added Left toward reactants
C) $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ is added

Right toward products
4. Consider the reaction between phosphorus(III) chloride and chlorine gas to produce phosphorus(V) chloride.

$$
\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{5}(\mathrm{~g}) \quad K_{\mathrm{p}}=24.2 \text { at } 523 \mathrm{~K}
$$

A) A 1.00 L container at constant temperature contains $P_{\mathrm{PCl}_{3}}=1.5 \mathrm{~atm}, P_{\mathrm{Cl}_{2}}=0.72 \mathrm{~atm}$, and $P_{\mathrm{PCl}_{5}}=0 \mathrm{~atm}$ initially. Calculate the partial pressures of each gas at equilibrium.
Because no PCl_{5} is present initially $\left(\mathrm{Q}<K_{\mathrm{p}}\right)$, equilibrium shifts to the right.
Set up an ICE chart (units of atm):

	$\mathrm{PCl}_{3}(\mathrm{~g})$	+	$\mathrm{Cl}_{2}(\mathrm{~g})$	\rightleftharpoons
I	1.5		0.72	
C	-x		-x	
E	$1.5-\mathrm{x}$		$0.72-\mathrm{x}$	

Now set up the equilibrium expression and solve for x :

$$
\begin{aligned}
K_{\mathrm{p}} & =\frac{P_{\mathrm{PCl}_{5}}}{P_{\mathrm{PCl}_{3}} P_{\mathrm{Cl}_{2}}} \\
24.2 & =\frac{\mathrm{x}}{(1.5-\mathrm{x})(0.72-\mathrm{x})} \\
0 & =24.2 \mathrm{x}^{2}-54.724 \mathrm{x}+26.136 \\
\mathrm{x} & =1.5_{8} \text { or } \mathrm{x}=0.68_{5}
\end{aligned}
$$

Discard the $x=1.5_{8}$ solution, so the equilibrium partial pressures are:

$$
P_{\mathrm{PCl}_{5}}=0.69 \mathrm{~atm} \quad P_{\mathrm{PCl}_{3}}=0.8 \mathrm{~atm} \quad P_{\mathrm{Cl}_{2}}=0.03 \mathrm{~atm}
$$

B) Describe some ways in which we can increase the yield of $\mathrm{PCl}_{5}(\mathrm{~g})$.

$$
\begin{array}{ll}
\text { Add either of the reactants } \rightarrow \text { shifts right } & \text { Decrease the volume } \rightarrow \text { shifts right } \\
\text { Remove products } \rightarrow \text { shifts right } & \text { Decrease the temperature } \rightarrow \text { see part } C
\end{array}
$$

Increase the pressure \rightarrow shifts right
C) The energy diagram for the reaction is shown below. Determine how the number of moles of PCl_{5} at equilibrium would change if system were heated.

The reaction is exothermic $(\Delta H<0)$, so we can treat heat as a "product." Therefore, increasing the temperature would shift the reaction to the left and the number of moles of PCl_{5} would decrease.
5. Consider the following weak-acid equilibrium.

Reaction Coordinate

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \quad K_{\mathrm{a}}=1.76 \times 10^{-5} \text { at } 298 \mathrm{~K}
$$

Calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$at equilibrium if the initial concentration of $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.59 M .

	$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$	+	$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$	\rightleftharpoons	$\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$	+
H	1.59	$\mathrm{H} \mathrm{H}_{3}+(\mathrm{aq})$				
C	-x		n/a		0	0
E	$1.59-\mathrm{x}$		n/a		+x	

$$
\begin{aligned}
K_{\mathrm{a}} & =\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \\
1.76 \times 10^{-5} & =\frac{\mathrm{x}^{2}}{1.59-\mathrm{x}} \\
1.76 \times 10^{-5} & \approx \frac{\mathrm{x}^{2}}{1.59} \\
\mathrm{x} & =5.29 \times 10^{-3} \mathrm{M}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
\end{aligned}
$$

