1. A gaseous chemical equilibrium has an equilibrium constant with the following form.

$$K_{\rm p} = \frac{P_{\rm HI}^2}{P_{\rm H_2}P_{\rm I_2}}$$

A) Write a balanced chemical equation for this equilibrium.

 $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$

B) Write an expression for K_c and determine the relationship between K_p and K_c .

$$K_{\rm c} = \frac{[{\rm HI}]^2}{[{\rm H}_2][{\rm I}_2]}$$

Use ideal gas law: $\Delta n = 0$

$$[\mathbf{x}] = \frac{n_{\mathbf{x}}}{V} = \frac{P_{\mathbf{x}}}{RT} \to K_{\mathbf{c}} = \frac{[\mathbf{HI}]^2}{[\mathbf{H}_2][\mathbf{I}_2]} = \frac{P_{\mathbf{HI}}^2}{P_{\mathbf{H}_2}P_{\mathbf{I}_2}} \times \left(\frac{1}{RT}\right)^{\Delta n} = K_{\mathbf{p}}$$

C) A container holds $[H_2] = 2.95 \times 10^{-3}$ M, $[I_2] = 5.22 \times 10^{-4}$ M, and $[HI] = 1.95 \times 10^{-3}$ M at 25 °C. If $K_c = 48.8$ at 25 °C, in which direction will the reaction proceed in the container?

Determine the reaction quotient (Q):

$$Q = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]} = \frac{(1.95 \times 10^{-3})^2}{(2.95 \times 10^{-3})(5.22 \times 10^{-4})} = 2.47$$

Because Q < K, the reaction will shift toward the right or products side (HI).

- 2. In the lab you synthesize green crystals of trihydrate potassium ferrioxalate (K_3 [Fe(C_2O_4)₃]·3H₂O) from aqueous solutions of FeCl₃ and $K_2C_2O_4$. Recrystallization from a saturated aqueous solution of your products is a commonly used technique to purify your desired products.
 - A) Write a solubility product equilibrium constant for the following dissolution:

Endothermic

 $K_3[Fe(C_2O_4)_3] \cdot 3H_2O(s) \rightleftharpoons 3K^+(aq) + [Fe(C_2O_4)_3]^{3-}(aq) + 3H_2O(l)$

$$K_{\rm sp} = [K^+]^3 [\{Fe(C_2O_4)_3\}^{3-}]$$

Exothermic

Left toward reactants

Right toward products

B) If cooling the saturated solution results in solid crystal formation, the dissolution of the $K_3[Fe(C_2O_4)_3]\cdot 3H_2O$ is ...

	If cooling shifts the equilibrium to the left, then heat must be Therefore, this reaction is <u>endothermic</u> : $\Delta H > 0$.	a "reactant."
3.	Consider the following aqueous equilibrium: $Fe^{3+}(aq) + SCN^{-}(aq) \rightleftharpoons FeSCN^{2+}(aq)$	$K_{\rm c} = 148$ at 298 K
	In which direction will the equilibrium shift if	
	A) Water is added such that the total volume is doubled	Left toward reactants

- B) NaOH is added
- C) $Fe(NO_3)_3$ is added

4. Consider the reaction between phosphorus(III) chloride and chlorine gas to produce phosphorus(V) chloride.

$$PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$$
 $K_p = 24.2 \text{ at } 523 \text{ K}$

A) A 1.00 L container at constant temperature contains $P_{PCl_3} = 1.5$ atm, $P_{Cl_2} = 0.72$ atm, and $P_{PCl_5} = 0$ atm initially. Calculate the partial pressures of each gas at equilibrium. Because no PCl₅ is present initially (Q < K_p), equilibrium shifts to the right.

Set up an ICE chart (units of atm):

	PCl₃ (g)	+	Cl ₂ (g)	⇒	PCl₅ (g)
1	1.5		0.72		0
С	- x		- x		+ X
<u> </u>	1.5 – x		0.72 – x		x

Now set up the equilibrium expression and solve for x:

$$K_{\rm p} = \frac{P_{\rm PCl_5}}{P_{\rm PCl_3}P_{\rm Cl_2}}$$

$$24.2 = \frac{x}{(1.5 - x)(0.72 - x)}$$

$$0 = 24.2x^2 - 54.724x + 26.136$$

$$x = 1.5_8 \text{ or } x = 0.68_5$$
Discard the x = 1.5₈ solution, so the equilibrium partial pressures are:

$$P_{\rm PCl_5} = 0.69 \text{ atm} \quad P_{\rm PCl_3} = 0.8 \text{ atm} \quad P_{\rm Cl_2} = 0.03 \text{ atm}$$

B) Describe some ways in which we can increase the yield of $PCl_5(g)$. Add either of the reactants \rightarrow shifts right Remove products \rightarrow shifts right Increase the pressure \rightarrow shifts right

Decrease the volume \rightarrow shifts right Decrease the temperature \rightarrow see part C

C) The energy diagram for the reaction is shown below. Determine how the number of moles of PCl_5 at equilibrium would change if system were heated.

The reaction is <u>exothermic</u> ($\Delta H < 0$), so we can treat heat as a "product." Therefore, increasing the temperature would shift the reaction to the <u>left</u> and the number of moles of PCl₅ would <u>decrease</u>.

 $CH_3COOH(aq) + H_2O(l) \rightleftharpoons CH_3COO^-(aq) + H_3O^+(aq)$

Reaction Coordinate $K_{\rm a} = 1.76 \times 10^{-5} {
m at} {
m 298 K}$

Calculate $[H_3O^+]$ at equilibrium if the initial concentration of CH_3COOH is 1.59 M.

