1. Octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ is a main component of gasoline used in cars.
A) Write a balanced chemical equation for the combustion of octane with oxygen.
B) Using the following standard enthalpies of formation, determine the standard change in enthalpy ($\Delta H_{\mathrm{rxn}}^{\mathrm{o}}$) for the combustion reaction of octane.

$$
\Delta H_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{C}_{8} \mathrm{H}_{18}(l)\right]=-249.9 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \Delta H_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-393.5 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \Delta H_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right]=-241.8 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

C) How much CO_{2} gas is produced if 1.25 L of octane (density $0.703 \mathrm{~g} / \mathrm{mL}$) are combusted?
2. A total of 1411 kJ of heat is applied to 500 . mL of liquid water, originally $25.0^{\circ} \mathrm{C}$, to convert it all to water vapor. What is the final temperature of the gaseous water?

$$
\begin{array}{lr}
c_{\mathrm{P}}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{~s})\right]=37.1 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot{ }^{\circ} \mathrm{C}} & \Delta H_{\mathrm{fus}}\left[\mathrm{H}_{2} \mathrm{O}\right]=6.01 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
c_{\mathrm{P}}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=75.3 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot{ }^{\circ} \mathrm{C}} & \Delta H_{\mathrm{vap}}\left[\mathrm{H}_{2} \mathrm{O}\right]=40.67 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
c_{\mathrm{P}}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right]=33.6 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot{ }^{\circ} \mathrm{C}} &
\end{array}
$$

3. Consider the following reaction:

$$
\mathrm{ClF}(g)+\mathrm{F}_{2}(g) \rightarrow \mathrm{ClF}_{3}(g)
$$

Calculate ΔH_{rxn} for the above reaction given the following reactions.
(i)
(ii)
(iii)

$$
\begin{aligned}
2 \mathrm{OF}_{2}(g) \rightarrow \mathrm{O}_{2}(g)+2 \mathrm{~F}_{2}(g) & \Delta H_{\mathrm{rxn}} & =-49.4 \mathrm{~kJ} \\
2 \mathrm{ClF}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{Cl}_{2} \mathrm{O}(g)+\mathrm{OF}_{2}(g) & \Delta H_{\mathrm{rxn}} & =+205.6 \mathrm{~kJ} \\
2 \mathrm{ClF}_{3}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{Cl}_{2} \mathrm{O}(g)+3 \mathrm{OF}_{2}(g) & \Delta H_{\mathrm{rxn}} & =+533.4 \mathrm{~kJ}
\end{aligned}
$$

