1. Consider the Gibbs free energy relationship

$$\Delta G = \Delta H - T \Delta S$$

Circle the <u>temperatures</u> at which the following reactions would be spontaneous:

Reaction	ΔS	ΔH	Spontaneous ($\Delta G < 0$) at			
(A)	positive	negative	all Temps	high Temps	low Temps	no Temps
(B)	positive	positive	all Temps	high Temps	low Temps	no Temps
(C)	negative	positive	all Temps	high Temps	low Temps	no Temps
(D)	negative	negative	all Temps	high Temps	low Temps	no Temps

- 2. Ammonia (NH₃) is a weak base in water with a $K_{\rm b} = 1.8 \times 10^{-5}$.
 - A) Calculate the standard Gibbs free energy change (ΔG°) for the dissociation of ammonia in water using the following table of thermodynamic properties at 298.15 K.

	NH_3 (aq)	$\rm NH_{4^+}$ (aq)	$H_2O(l)$	OH⁻ (aq)
$\Delta H^{\circ} \left(\frac{\mathrm{kJ}}{\mathrm{mol}} \right)$	-80.3	-132.5	-285.8	-230.0
$\Delta S^{\circ} \left(\frac{J}{\mathrm{mol} \cdot \mathrm{K}} \right)$	111.3	113.4	69.9	-10.8

B) Calculate the equilibrium constant (K_b) for NH₃ based on its ΔG° from part A.

$$\Delta G^{\circ} = -RT \ln K \quad K = e^{-\Delta G^{\circ}/RT} \quad R = 8.314 \frac{\mathsf{J}}{\mathsf{mol} \cdot \mathsf{K}}$$

D) Do you think typical aqueous solutions of weak acids/bases are at standard conditions? The answer is no! Why?

Now calculate the Gibbs free energy change (ΔG) when [NH₃] = 0.60 M and [NH₄⁺] = [OH⁻] = 0.0010 M at 298.15 K. Is this process spontaneous now?

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

- 3. For each reaction, predict the sign of the entropy change.
 - A) $Ag^+(aq) + Cl^-(aq) \rightarrow AgCl(s)$
 - B) $2 C_6 H_6 (l) + 15 O_2 (g) \rightarrow 6 CO_2 (g) + 3 H_2 O (l)$
- 4. What is the free energy change (ΔG) for the process shown under the specified conditions?

$$2 \text{ NH}_{3}(g) \rightleftharpoons \text{N}_{2}(g) + 3 \text{ H}_{2}(g) \qquad \Delta G^{\circ} = 33.0 \text{ kJ/mol}$$

$$T = 25 \text{ °C} \qquad P_{\text{NH}_{3}} = 12.9 \text{ atm} \qquad P_{\text{N}_{2}} = 0.870 \text{ atm} \qquad P_{\text{H}_{2}} = 0.250 \text{ atm}$$