1. Consider the Gibbs free energy relationship

$$\Delta G = \Delta H - T \Delta S$$

Circle the <u>temperatures</u> at which the following reactions would be spontaneous:

Reaction	ΔS	ΔΗ	Spontaneous ($\Delta G < 0$) at			
(A)	positive	negative	<u>all Temps</u>	high Temps	low Temps	no Temps
(B)	positive	positive	all Temps	<u>high Temps</u>	low Temps	no Temps
(C)	negative	positive	all Temps	high Temps	low Temps	<u>no Temps</u>
(D)	negative	negative	all Temps	high Temps	low Temps	no Temps

- 2. Ammonia (NH₃) is a weak base in water with a $K_{\rm b} = 1.8 \times 10^{-5}$.
 - A) Calculate the standard Gibbs free energy change (ΔG°) for the dissociation of ammonia in water using the following table of thermodynamic properties at 298.15 K.

	NH ₃ (aq)	$\rm NH_{4^+}$ (aq)	$H_2O(l)$	OH⁻ (aq)
$\Delta H^{\circ} \left(\frac{\mathrm{kJ}}{\mathrm{mol}} \right)$	-80.3	-132.5	-285.8	-230.0
$\Delta S^{\circ} \left(\frac{J}{\operatorname{mol} \cdot K} \right)$	111.3	113.4	69.9	-10.8

First, write out the balanced chemical equation:

 NH_3 (aq) + H_2O (l) \Rightarrow NH_4^+ (aq) + OH^- (aq)

Second, calculate the standard enthalpy and entropy changes:

$$\Delta H^{\circ} = -132.5 \frac{\text{kJ}}{\text{mol}} + \left(-230.0 \frac{\text{kJ}}{\text{mol}}\right) - \left(-80.3 \frac{\text{kJ}}{\text{mol}}\right) - \left(-285.8 \frac{\text{kJ}}{\text{mol}}\right) = 3.6 \frac{\text{kJ}}{\text{mol}}$$
$$\Delta S^{\circ} = 113.4 \frac{\text{J}}{\text{mol} \cdot \text{K}} + \left(-10.8 \frac{\text{J}}{\text{mol} \cdot \text{K}}\right) - 111.3 \frac{\text{J}}{\text{mol} \cdot \text{K}} - 69.9 \frac{\text{J}}{\text{mol} \cdot \text{K}} = -78.6 \frac{\text{J}}{\text{mol} \cdot \text{K}}$$

Third, calculate the standard free energy change:

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$
$$= \left(3.6 \frac{\text{kJ}}{\text{mol}} \times \frac{1000 \text{ J}}{1 \text{ kJ}}\right) - (298.15 \text{ K}) \left(-78.6 \frac{\text{J}}{\text{mol} \cdot \text{K}}\right)$$
$$\Delta G^{\circ} = 2.7 \times 10^4 \frac{\text{J}}{\text{mol}}$$

B) Calculate the equilibrium constant (K_b) for NH₃ based on its ΔG° from part A.

$$\Delta G^{\circ} = -RT \ln K \quad K = e^{-\Delta G^{\circ}/RT} \quad R = 8.314 \frac{J}{\text{mol} \cdot K}$$

$$K_{\text{L}} = \exp\{-\frac{\Delta G^{\circ}}{R}\}$$

$$K_{\rm b} = \exp\{-\frac{RT}{RT}\}$$

= $\exp\{-\frac{2.7 \times 10^4 \,\text{J}}{(8.314 \,\text{J} \,\text{mol} \cdot \text{K})(298.15 \,\text{K})}\}$
 $K_{\rm b} = 1.8 \times 10^{-5}$

C) What are standard conditions? This is what the "o" symbol denotes in ΔG° . Is the dissociation of ammonia spontaneous under standard conditions?

Concentrations are 1.0 M, pressures are 1.0 atm, standard states, and temperature is 25 °C = 298.15 K <u>Nonspontaneous under standard conditions.</u>

D) Do you think typical aqueous solutions of weak acids/bases are at standard conditions? The answer is no! Why? Concentration of the conjugate-base/acid is not typically 1.0 M

Now calculate the Gibbs free energy change (ΔG) when [NH₃] = 0.60 M and [NH₄⁺] = [OH⁻] = 0.0010 M at 298.15 K. Is this process spontaneous now?

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

= 2.7 × 10⁴ $\frac{J}{mol} + \left(8.314 \frac{J}{mol \cdot K}\right) (298.15 \text{ K}) \ln \left[\frac{(0.0010)(0.0010)}{0.60}\right]$
$$\Delta G = -5.9 \times 10^3 \frac{J}{mol}$$

Spontaneous under these conditions.

- 3. For each reaction, predict the sign of the entropy change.
 - A) $Ag^+(aq) + Cl^-(aq) \rightarrow AgCl(s)$

Entropy decreases going from reactants to products \rightarrow more ordered $\rightarrow \Delta S < 0$

B) $2 C_6 H_6 (l) + 15 O_2 (g) \rightarrow 6 CO_2 (g) + 3 H_2 O (l)$

Entropy decreases going from reactants to products \rightarrow more ordered $\rightarrow \Delta S < 0$

4. What is the free energy change (ΔG) for the process shown under the specified conditions?

$$2 \text{ NH}_{3}(g) \rightleftharpoons \text{N}_{2}(g) + 3 \text{ H}_{2}(g) \qquad \Delta G^{\circ} = 33.0 \text{ kJ/mol}$$

$$T = 25 \text{ °C} \qquad P_{\text{NH}_{3}} = 12.9 \text{ atm} \qquad P_{\text{N}_{2}} = 0.870 \text{ atm} \qquad P_{\text{H}_{2}} = 0.250 \text{ atm}$$

Recall that the reaction quotient for this reaction can be expressed as:

$$Q = \frac{P_{N_2} P_{H_2}^3}{P_{NH_3}^2}$$

And that we can calculate nonstandard free energy changes via:

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

= $\left(33.0 \frac{\text{kJ}}{\text{mol}} \times \frac{1000 \text{ J}}{1 \text{ kJ}}\right) + \left(8.314 \frac{\text{J}}{\text{mol} \cdot \text{K}}\right) (298.15 \text{ K}) \ln \left[\frac{(0.870)(0.250)^3}{(12.9)^2}\right]$
$$\Delta G = 9680 \frac{\text{J}}{\text{mol}}$$