1. You have four identical 1.00 L unbreakable containers filled with gases. The molar masses of the gases are given in curly brackets $\}$. Assume all gases are ideal.

Flask A: $\quad 1.0 \mathrm{~mol} \mathrm{He} \quad\{4.00 \mathrm{~g} / \mathrm{mol}\} \quad 100 \mathrm{~K}$

Flask B: $0.40 \mathrm{~mol} \mathrm{CO} \quad\{28.01 \mathrm{~g} / \mathrm{mol}\} \quad 400 \mathrm{~K}$

Flask C: $\quad 1.0$ atm $\mathrm{Cl}_{2} \quad\{70.91 \mathrm{~g} / \mathrm{mol}\} \quad 298 \mathrm{~K}$

Flask D: 1.0 atm $\mathrm{NO}_{2} \quad\{46.01 \mathrm{~g} / \mathrm{mol}\} \quad 273 \mathrm{~K}$
(a) Which flask has the greatest pressure?

Flasks C and D are both at 1 atm pressure. Determine the pressure of flasks A and B :
$P_{A}=\frac{n R T}{V}=\frac{(1.0 \mathrm{~mol})\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{Latm}}\right)(100 \mathrm{~K})}{1.0 \mathrm{~L}}=8.2 \mathrm{~atm} \quad \mathrm{P}_{\mathrm{B}}=\frac{\mathrm{nRT}}{\mathrm{V}}=\frac{(0.40 \mathrm{~mol})\left(0.08200 \frac{\mathrm{Latm}}{\mathrm{mol} \mathrm{K}}\right)(400 \mathrm{~K})}{1.0 \mathrm{~L}}=13 \mathrm{~atm}$
Answer: Flask B
(b) Which flask is at STP?

Recall that STP is $\mathrm{T}=0^{\circ} \mathrm{C}=273 \mathrm{~K}$ and $\mathrm{P}=1.0 \mathrm{~atm}$.
Answer: Flask D
(c) In which flask would the contents take up the smallest volume if brought to STP?

Recall that at STP, the volume of 1 mol of any ideal gas is 22.4 L .
Therefore, the volume is directly proportional to the number of moles of each gas (Vstp $\alpha \mathrm{n}$).
Flask A has 1.0 mol of gas and flask B has 0.40 mol of gas.
Determine the number of moles in flasks C and D :

$$
\mathrm{n}_{\mathrm{C}}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{(1.0 \mathrm{~atm})(1.0 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})}=0.041 \mathrm{~mol} \mathrm{Cl}_{2} \quad \mathrm{n}_{\mathrm{D}}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{(1.0 \mathrm{~atm})(1.0 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(273 \mathrm{~K})}=0.045 \mathrm{~mol} \mathrm{NO}_{2}
$$

Answer: Flask C
(d) In which flask will diffusion of the gas be fastest?

$$
\text { rate }_{\text {diff }} \propto \sqrt{T / M} \propto T / M
$$

	Flask A	Flask B	Flask C	Flask D
T/M	25	14	4.2	5.9

Answer: Flask A

2. A gas tank has a volume of 32.0 L , a temperature of $27.0^{\circ} \mathrm{C}$, a pressure of $1.10 \times 10^{5} \mathrm{Torr}$, and contains 748 g of an unknown gas. What is the identity of the gas?
Determine the number of moles of unknown gas (X) using the ideal gas law:

$$
\mathrm{n}_{\mathrm{X}}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{\left(2125 \mathrm{psi} \times \frac{1 \mathrm{~atm}}{14.7 \mathrm{psi}}\right)(32 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(27+273.15 \mathrm{~K})}=18_{7.8} \mathrm{~mol} \mathrm{X}
$$

We can determine the molar mass of gas $\mathrm{X}\left(\mathrm{MM}_{\mathrm{x}}\right)$ now:

$$
\mathrm{MM}_{\mathrm{X}}=\frac{\mathrm{mass}_{\mathrm{X}}}{\mathrm{n}_{\mathrm{X}}}=\frac{748 \mathrm{~g} \mathrm{X}}{18_{7.8} \mathrm{molX}}=4.0 \frac{\mathrm{~g}}{\mathrm{~mol}}
$$

The gas is helium (He).
3. An average person consumes 31 g of O_{2} per hour through the following balanced chemical equation (cellular respiration):

$$
6 \mathrm{O}_{2}(g)+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q) \rightarrow 36 \text { ATP }(a q)+6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l)
$$

What volume of O_{2} (at STP) is consumed in 30.0 minutes?
Determine number of moles of O_{2} required:

$$
30 \mathrm{~min} \times \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \times \frac{31 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{hr}} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{32.00 \mathrm{~g} \mathrm{O}_{2}}=0.48_{4} \mathrm{~mol} \mathrm{O}_{2}
$$

Determine volume of this much O_{2} using the ideal gas law:

$$
\mathrm{V}_{\mathrm{O}_{2}}=\frac{\mathrm{n}_{\mathrm{O}_{2}} \mathrm{RT}}{\mathrm{P}}=\frac{\left(0.48_{4} \mathrm{~mol} \mathrm{O}_{2}\right)\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(273.15 \mathrm{~K})}{1.00 \mathrm{~atm}}=11 \mathrm{~L}
$$

4. Consider the following arrangement of two flasks at 400.0 K , connected by a stopcock. Assume that the gases are ideal and the tube connecting the two flasks has negligible volume.

(a) Assuming no chemical reaction between NO and O_{2}, calculate the partial pressures of NO and O_{2} if the stopcock were opened. Assume no temperature changes.
Use pressure-volume gas relationship to find new partial pressures: $P_{1} V_{1}=P_{2} V_{2}$

$$
\begin{gathered}
P_{\mathrm{O}_{2}}=\frac{(100.0 \mathrm{Torr})(2.0 \mathrm{~L})}{6.0 \mathrm{~L}}=33 \text { Torr } \\
P_{\mathrm{NO}}=\frac{(600.0 \mathrm{Torr})(4.0 \mathrm{~L})}{6.0 \mathrm{~L}}=4.0 \times 10^{2} \mathrm{Torr}
\end{gathered}
$$

(b) Now assume that when the stopcock is opened, the NO and O_{2} react to form NO_{2}. Assume that there is no temperature changes.

Calculate the partial pressures of NO and O_{2} after the reaction is complete.

$$
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g)
$$

First, determine the number of moles of each reactant through the ideal gas law:

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{NO}}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{\left(600.0 \mathrm{Torr} \times \frac{1 \mathrm{~atm}}{760 \mathrm{Torr}}\right)(4.0 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(400.0 \mathrm{~K})}=0.096_{2} \mathrm{~mol} \mathrm{NO} \\
& \mathrm{n}_{\mathrm{O}_{2}}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{\left(100.0 \mathrm{Torr} \times \frac{1 \mathrm{~atm}}{760 \mathrm{Torr}}\right)(2.0 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(400.0 \mathrm{~K})}=0.0080_{2} \mathrm{~mol} \mathrm{O}_{2}
\end{aligned}
$$

Second, determine that the limiting reactant is O_{2} :

$0.096_{2} \mathrm{~mol} \mathrm{NO} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{NO}}=0.048_{1} \mathrm{~mol} \mathrm{O}_{2}$ \rightarrow We have less O_{2} than we need.	$\begin{gathered} 0.096_{2} \mathrm{~mol} \mathrm{NO} \times \frac{2 \mathrm{~mol} \mathrm{NO}}{2} \\ 2 \mathrm{~mol} \mathrm{NO} \end{gathered}=0.096_{2} \mathrm{~mol} \mathrm{NO}_{2} .$

Since O_{2} is limiting, none will be left after the reaction. However, some NO gas will be left over:

$$
\begin{gathered}
0.0080_{2} \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NO}}{1 \mathrm{~mol} \mathrm{O}_{2}}=0.016_{0} \mathrm{~mol} \mathrm{NO} \text { reacted } \\
\mathrm{n}_{\mathrm{NO}, \text { left over }}=0.096_{2} \mathrm{~mol}-0.016_{0} \mathrm{~mol}=0.080_{2} \mathrm{~mol} \mathrm{NO} \text { left over }
\end{gathered}
$$

Third, find the partial pressures of NO gas leftover:

$$
\mathbf{P}_{\mathrm{NO}}=\frac{\mathrm{nRT}}{\mathrm{~V}}=\frac{\left(0.080_{2} \mathrm{~mol}\right)\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(400.0 \mathrm{~K})}{(2.0 \mathrm{~L}+4.0 \mathrm{~L})}=0.43_{9} \mathrm{~atm} \times \frac{760 \mathrm{Torr}}{1 \mathrm{~atm}}=330 \mathrm{Torr}
$$

