- 1. Form a group of 4 students. Divide the 4 elements (**S**, **Cl**, **Se**, **Br**) such that every member of your group has one of the 4 elements. Answer the following questions for your individual element, and then share your answers.
 - (a) Write the ground-state electronic configuration and orbital diagram for a neutral atom of your element.

S: 1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶ 3 <i>s</i> ² 3 <i>p</i> ⁴	or	[Ne] 3 <i>s</i> ²3 <i>p</i> ₄
Cl: 1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶ 3 <i>s</i> ² 3 <i>p</i> ⁵	or	[Ne] 3 <i>s</i> ²3 <i>p</i> ⁵
Se: 1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶ 3 <i>s</i> ² 3 <i>p</i> ⁶ 4 <i>s</i> ² 3 <i>d</i> ¹⁰ 4 <i>p</i> ⁴	or	[Ar] 4 <i>s</i> ² 3 <i>d</i> ¹⁰ 4 <i>p</i> ⁴
Br: 1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶ 3 <i>s</i> ² 3 <i>p</i> ⁶ 4 <i>s</i> ² 3 <i>d</i> ¹⁰ 4 <i>p</i> ⁵	or	[Ar] 4 <i>s</i> 23 <i>d</i> 104 <i>p</i> 5

- (b) How many valence electrons does a neutral atom of your element have? S: 6 Cl: 7 Se: 6 Br: 7
- (c) For your element, write all four quantum numbers for an electron in the valence shell. For example, CI: n = 2, $\ell = 1$, $m_{\ell} = -1$ (or 0 or +1), $m_s = +\frac{1}{2}$ (or $-\frac{1}{2}$)
- (d) How many unpaired electrons does a neutral atom of your element have? S: 2 Cl: 1 Se: 2 Br: 1
- 2. On the empty periodic table below, draw arrows corresponding to the general trends for **ionization energies** going across a period and down a group.

- 3. Consider the following four electron transitions:
- (i) From n = 1 to n = 2
- (ii) From n = 2 to n = 3
- (iii) From n = 3 to n = 4
- (iv) From n = 4 to n = 5
- (a) <u>Without any calculations</u>, which of the electron transitions in a hydrogen atom would be associated with **radiation with the shortest wavelength**? Can you draw an energy diagram to support your answer?

(i) From n = 1 to n = 2 (See Figure 7 on page 344 of 5th of textbook)

(b) Now, calculate the wavelengths for the transitions based on the equation to check your answers.

$$\frac{1}{\lambda} = [1.097 \times 10^{-2} \text{ nm}^{-1}] \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

Transitions	1/λ (nm⁻¹)	λ (nm)	λ (m)
From $n = 1$ to $n = 2$	0.008228	121.5	1.215 × 10 ⁻⁷
From $n = 2$ to $n = 3$	0.001524	656.3	6.563 × 10 ⁻⁷
From $n = 3$ to $n = 4$	0.0005333	1875	1.875 × 10 ⁻⁶
From $n = 4$ to $n = 5$	0.0002468	4051	4.051 × 10 ⁻⁶

- (c) What kind of electromagnetic radiation (visible, IR, etc.) are these photons? Ultraviolet (UV)
- 4. Which of these is not a possible orbital?Explain your answer using the definitions of the different quantum numbers.

(a) 3 <i>p</i>	(b) 2 <i>p</i>	(c) 5 <i>s</i>	(d) 2 <i>d</i>

For n = 2, the largest possible value of l is 1, which is a *p*-orbital.

- 5. For each pair of atoms/ions, identify which one has a larger radius.
 - (a) Na or K (b) K or Ca (c) Kr or Kr⁺ (d) Rb⁺ or Kr (e) Cl⁻ or Ar