1. Form a group of 4 students. Divide the 4 elements (S, Cl, Se, Br) such that every member of your group has one of the 4 elements. Answer the following questions for your individual element, and then share your answers.
(a) Write the ground-state electronic configuration and orbital diagram for a neutral atom of your element.
S: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$
or $\quad[\mathrm{Ne}] 3 s^{2} 3 p^{4}$
$\mathrm{Cl}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
or $\quad[\mathrm{Ne}] 3 s^{2} 3 p^{5}$
Se: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{4}$
or $\quad[\mathrm{Ar}] 4 s^{2} 3 d^{104} p^{4}$
$\mathrm{Br}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{5}$
or
[Ar] $4 s^{23} d^{104} 4 p^{5}$
(b) How many valence electrons does a neutral atom of your element have?

S: $6 \quad \mathrm{Cl}: 7$ Se: 6 Br: 7
(c) For your element, write all four quantum numbers for an electron in the valence shell.

For example, CI: $n=2, \ell=1, m_{\ell}=-1$ (or 0 or +1), $m_{s}=+1 / 2($ or $-1 / 2)$
(d) How many unpaired electrons does a neutral atom of your element have?

S: $2 \quad$ Cl: $1 \quad$ Se: $2 \quad \mathrm{Br}: 1$
2. On the empty periodic table below, draw arrows corresponding to the general trends for ionization energies going across a period and down a group.

3. Consider the following four electron transitions:
(i) From $n=1$ to $n=2$
(ii) From $n=2$ to $n=3$
(iii) From $n=3$ to $n=4$
(iv) From $n=4$ to $n=5$
(a) Without any calculations, which of the electron transitions in a hydrogen atom would be associated with radiation with the shortest wavelength? Can you draw an energy diagram to support your answer?
(i) From $n=1$ to $n=2$
(See Figure 7 on page 344 of $5^{\text {th }}$ of textbook)
(b) Now, calculate the wavelengths for the transitions based on the equation to check your answers.

$$
\frac{1}{\lambda}=\left[1.097 \times 10^{-2} \mathrm{~nm}^{-1}\right]\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

Transitions	$1 / \lambda\left(\mathrm{nm}^{-1}\right)$	$\lambda(\mathrm{nm})$	$\lambda(\mathrm{m})$
From $n=1$ to $n=2$	0.008228	121.5	1.215×10^{-7}
From $n=2$ to $n=3$	0.001524	656.3	6.563×10^{-7}
From $n=3$ to $n=4$	0.0005333	1875	1.875×10^{-6}
From $n=4$ to $n=5$	0.0002468	4051	4.051×10^{-6}

(c) What kind of electromagnetic radiation (visible, IR, etc.) are these photons?

Ultraviolet (UV)
4. Which of these is not a possible orbital?

Explain your answer using the definitions of the different quantum numbers.
(a) $3 p$
(b) $2 p$
(c) 5 s
(d) $2 d$

For $n=2$, the largest possible value of ℓ is 1 , which is a p-orbital.
5. For each pair of atoms/ions, identify which one has a larger radius.
(a) Na or K
(b) K or Ca
(c) Kr or Kr^{+}
(d) Rb^{+}or Kr
(e) Cl^{-}or Ar

