1. Consider a radioactive nuclide of element X with mass number A and atomic number Z . Write a general nuclear equation for each type of decay in the table below.

Decay Type	General Nuclear Equation	Description
β decay	${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X} \rightarrow \underset{\mathrm{Z}+1}{ }{ }_{1}^{\mathrm{A}} \mathrm{Y}+{ }_{-1}^{0} \beta$	Neutron-rich
positron emission	${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X} \rightarrow$	Neutron-poor
electron capture	${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X} \rightarrow$	Neutron-poor
α decay	${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X} \rightarrow$	Neutron-rich (Z>83)

2. Complete each nuclear reaction given below.
A) ${ }_{86}^{22} \mathrm{Rn} \rightarrow{ }_{84}^{218} \mathrm{Po}+{ }_{{ }_{\mathrm{A}}}$
B) ${ }_{53}^{131} \mathrm{I} \rightarrow{ }_{54}^{131} \mathrm{Xe}+?_{\mathrm{B}}$
C) ${ }_{6}^{11} \mathrm{C} \rightarrow{ }^{?}{ }_{\mathrm{C}}+{ }_{+1}^{0} \beta$
D) Electron capture by cadmium-104 ($\left.{ }_{48}^{104} \mathrm{Cd}\right)$
E) ${ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow ?_{\mathrm{E} 1} \rightarrow{ }_{52}^{137} \mathrm{Te}+?_{\mathrm{E} 2}+2{ }_{0}^{1} \mathrm{n}$
3. Both carbon- 14 and potassium- 40 can be used for radiometric dating. The half-life of ${ }^{14} \mathrm{C}$ is 5730 years and the half-life of ${ }^{40} \mathrm{~K}$ is 1.28×10^{9} years.

$$
\text { Rate }=k \mathrm{~N} \quad t_{1 / 2}=\frac{\ln 2}{k} \quad t=-\frac{1}{k} \ln \frac{\mathrm{~N}_{t}}{\mathrm{~N}_{0}}
$$

A) Which radioisotope is preferred for radiodating a rock that is 20,000 years old?
B) Neither method is good for a 200,000-year-old rock. Calculate the fraction of ${ }^{14} \mathrm{C}$ and ${ }^{40} \mathrm{~K}$ remaining in the rock to determine why this is so.
4. Mercury- 197 has a half-life of 65 hours. What fraction of a mercury sample remains after 6 days?

$$
\text { Rate }=k \mathrm{~N} \quad t_{1 / 2}=\frac{\ln 2}{k} \quad t=-\frac{1}{k} \ln \frac{\mathrm{~N}_{t}}{\mathrm{~N}_{0}}
$$

5. Iron-56 is often considered the most stable nuclide although it is actually the third-most stable. Nickel-62 is the most stable nuclide. Given the mass of a proton, neutron, and measured mass of ${ }_{28}^{62} \mathrm{Ni}$ below, calculate the binding energy per nucleon for ${ }_{28}^{62} \mathrm{Ni}$.

$$
m_{\text {proton }}=1.0073 \mathrm{amu} \quad m_{\text {neutron }}=1.0087 \mathrm{amu} \quad m_{62} \mathrm{Ni}=61.9283 \mathrm{amu}
$$

Recall $\Delta E=\Delta m c^{2}$ where $c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}, 1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}$, and $1 \mathrm{~J}=1 \mathrm{~kg} \cdot(\mathrm{~m} / \mathrm{s})^{2}$.
6. Silicon- 28 can be made by many different nuclear fusion reactions. Which of the two fusion reactions, A or B, releases the greater amount of energy?
A) ${ }^{14} \mathrm{~N}+{ }^{14} \mathrm{~N} \rightarrow{ }^{28} \mathrm{Si}$
B) ${ }^{16} \mathrm{O}+{ }^{12} \mathrm{C} \rightarrow{ }^{28} \mathrm{Si}$
where:
${ }^{14} \mathrm{~N}=14.00307 \mathrm{amu}{ }^{28} \mathrm{Si}=27.97693 \mathrm{amu}$
${ }^{16} \mathrm{O}=15.99491 \mathrm{amu} \quad{ }^{12} \mathrm{C}=12.00000 \mathrm{amu}$

Propose an alternative fusion reaction to produce ${ }^{28} \mathrm{Si}$.

