1. Consider a radioactive nuclide of element X with mass number A and atomic number Z. Write a general nuclear equation for each type of decay in the table below.

Decay Type	General Nuclear Equation	Description
β decay	$^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + {}^{0}_{-1}\beta$	Neutron-rich
positron emission	$^{A}_{Z}X \rightarrow$	Neutron-poor
electron capture	$^{A}_{Z}X \rightarrow$	Neutron-poor
α decay	$^{A}_{Z}X \rightarrow$	Neutron-rich (Z>83)

- 2. Complete each nuclear reaction given below.
 - A) $^{222}_{86}$ Rn $\rightarrow ^{218}_{84}$ Po + ?_A
 - B) $^{131}_{53}I \rightarrow ^{131}_{54}Xe + ?_B$
 - C) ${}^{11}_{6}C \rightarrow \boxed{?_{C}} + {}^{0}_{+1}\beta$
 - D) Electron capture by cadmium-104 $\binom{104}{48}$ Cd)
 - E) ${}^{235}_{92}U + {}^{1}_{0}n \rightarrow \boxed{?_{E1}} \rightarrow {}^{137}_{52}Te + \boxed{?_{E2}} + 2{}^{1}_{0}n$
- 3. Both carbon-14 and potassium-40 can be used for radiometric dating. The half-life of ${}^{14}C$ is 5730 years and the half-life of ${}^{40}K$ is 1.28 × 10⁹ years.

Rate =
$$kN$$
 $t_{1/2} = \frac{\ln 2}{k}$ $t = -\frac{1}{k} \ln \frac{N_t}{N_0}$

- A) Which radioisotope is preferred for radiodating a rock that is 20,000 years old?
- B) Neither method is good for a 200,000-year-old rock. Calculate the fraction of ¹⁴C and ⁴⁰K remaining in the rock to determine why this is so.

4. Mercury-197 has a half-life of 65 hours. What fraction of a mercury sample remains after 6 days?

Rate =
$$kN$$
 $t_{1/2} = \frac{\ln 2}{k}$ $t = -\frac{1}{k} \ln \frac{N_t}{N_0}$

5. Iron-56 is often considered the most stable nuclide although it is actually the third-most stable. Nickel-62 is the most stable nuclide. Given the mass of a proton, neutron, and measured mass of ${}^{62}_{28}$ Ni below, calculate the binding energy *per* nucleon for ${}^{62}_{28}$ Ni.

 $m_{\rm proton} = 1.0073 \text{ amu}$ $m_{\rm neutron} = 1.0087 \text{ amu}$ $m_{\frac{62}{28}\text{Ni}} = 61.9283 \text{ amu}$

Recall $\Delta E = \Delta mc^2$ where $c = 3.00 \times 10^8$ m/s, 1 amu = 1.66×10^{-27} kg, and 1 J = 1 kg $\cdot (m/s)^2$.

- 6. Silicon-28 can be made by many different nuclear fusion reactions. Which of the two fusion reactions, A or B, releases the greater amount of energy?
 - A) ${}^{14}N + {}^{14}N \rightarrow {}^{28}Si$ where: ${}^{14}N = 14.00307 \text{ amu} {}^{28}Si = 27.97693 \text{ amu}$ B) ${}^{16}O + {}^{12}C \rightarrow {}^{28}Si$ ${}^{16}O = 15.99491 \text{ amu} {}^{12}C = 12.00000 \text{ amu}$

Propose an alternative fusion reaction to produce ²⁸Si.