1. Methyl isocyanate $\left(\mathrm{CH}_{3} \mathrm{NCO}\right)$ is a toxic compound commonly used in the production of pesticides.
(a) Draw the Lewis structure for $\mathrm{CH}_{3} \mathrm{NCO}$. Include all bonds, lone pairs, and any formal charges.

(b) Estimate the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ bond angle and explain why.

Less than 120° because the lone pair on N pushes the two C atoms closer together.
The electron-pair geometry is trigonal planar, but the molecular geometry is bent (angular).
(c) On your Lewis structure, indicate the hybridization of the C and N atoms.
(d) How many σ-bonds and π-bonds are present in $\mathrm{CH}_{3} \mathrm{NCO}$.
6σ bonds $(3 \times \mathrm{C}-\mathrm{H}+\mathrm{C}-\mathrm{N}+\mathrm{N}=\mathrm{C}+\mathrm{N}=\mathrm{O}$) and 2π bonds ($\mathrm{N}=\mathrm{C}+\mathrm{N}=\mathrm{O}$)
2. Draw each of the following molecules showing their geometry clearly. Indicate all bond dipoles on your pictures.
PF_{3}

$\mathrm{CH}_{2} \mathrm{O}$

BF_{3}

> RED $=$ bond dipole
> BLUE $=$ molecular dipole

Which molecule(s) are polar?
PF_{3} and $\mathrm{CH}_{2} \mathrm{O}$
3. The species $\mathrm{NO}_{2}, \mathrm{NO}_{2}{ }^{+}$, and $\mathrm{NO}_{2}{ }^{-}$have different bond angles. Arrange the three compounds in order of decreasing bond angle. Drawing the Lewis structures will help.
Consider impact of one (radical) vs. two electrons (lone pair) on bond angle.

$>$

4. Draw an MO diagram of the cyanide anion. What is the bond order of the CN bond? Is the cyanide anion paramagnetic or diamagnetic?
Bond $\operatorname{Order}(C N)=1 / 2(8-2)=3$
CN - is diamagnetic because all electrons are paired.

