- 1. Consider dissolving 50 mol of a non-volatile solute in 100 mol of liquid water at 100 °C.
 - (a) What is the vapor pressure of this solution? Assume ideal behavior.
 - (b) How would the vapor pressure in part (a) change if the solute-solvent interactions became more favorable?
- 2. Consider the following information.

$\Delta H_{\rm f}^{\rm o}[{\rm CaCl}_2(s)] = -795.4 \text{ kJ/mol}$	$\Delta H_{\rm sub}[{\rm Ca}(s)] = 154 {\rm kJ/mol}$	$\Delta H_{\rm BE}[{\rm Cl}_2] = 240 \text{ kJ/mol}$
$IE_1[Ca] = 590 \text{ kJ/mol}$	$IE_2[Ca] = 1145 \text{ kJ/mol}$	EA[Cl] = -349 kJ/mol

(a) Calculate the lattice energy (U) of CaCl₂. Draw an energy diagram, with energy on the y-axis, of the Born-Haber cycle that enables you to calculate the lattice energy (U).

(b) Would you expect the lattice energy of MgCl₂ to larger or smaller than that of CaCl₂?

3. The osmotic pressure of a 0.0100 M CaCl₂ solution at 298 K is 0.605 atm. How many moles of ions are dissociated for every mole of $CaCl_2$ dissolved in solution.

4. The wasp, *Bracon cephi*, survives in sub-freezing climates by elevating levels of glycerol, a compound composed of only C, H, and O atoms, in their blood as high as 5.00 mol/kg to depress the freezing point of blood. If typical blood ($K_f = 1.853 \text{ °C}/m$) freezes at -1.50 °C, what is freezing point of wasp blood?