1. Consider dissolving 50 mol of a non-volatile solute in 100 mol of liquid water at $100^{\circ} \mathrm{C}$.
(a) What is the vapor pressure of this solution? Assume ideal behavior.

$$
\begin{gathered}
\chi_{\text {water }}=\frac{100 \mathrm{~mol}}{100 \mathrm{~mol}+50 \mathrm{~mol}}=0.667 \\
\mathrm{P}_{\text {solution }}=\chi_{\text {water }} \mathrm{P}_{\text {water }}^{\mathrm{o}}=(0.667)(1.00 \mathrm{~atm})=0.667 \mathrm{~atm}
\end{gathered}
$$

(b) How would the vapor pressure in part (a) change if the solute-solvent interactions became more favorable?

Vapor pressure would decrease as the solute-solvent interactions become stronger.
2. Consider the following information.

$$
\begin{array}{ccc}
\Delta H_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{CaCl}_{2}(s)\right]=-795.4 \mathrm{~kJ} / \mathrm{mol} & \Delta H_{\mathrm{sub}}[\mathrm{Ca}(s)]=154 \mathrm{~kJ} / \mathrm{mol} & \Delta H_{\mathrm{BE}}\left[\mathrm{Cl}_{2}\right]=240 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{IE}_{1}[\mathrm{Ca}]=590 \mathrm{~kJ} / \mathrm{mol} & \mathrm{IE}_{2}[\mathrm{Ca}]=1145 \mathrm{~kJ} / \mathrm{mol} & \mathrm{EA}[\mathrm{Cl}]=-349 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

(a) Calculate the lattice energy (U) of CaCl_{2}. Draw an energy diagram, with energy on the y-axis, of the Born-Haber cycle that enables you to calculate the lattice energy (U).

$$
\begin{aligned}
\Delta H_{\mathrm{f}, \mathrm{CaCl}_{2}(s)}^{\mathrm{o}} & =\Delta H_{\mathrm{sub}, \mathrm{Ca}(s)}+\Delta H_{\mathrm{BE}, \mathrm{Cl}}(g) \\
-795.4 \frac{\mathrm{~kJ}}{\mathrm{~mol}} & =154 \frac{\mathrm{~kJ}}{\mathrm{~mol}}+240 \frac{\mathrm{~kJ}}{\mathrm{~mol}}+590 \frac{\mathrm{~kJ}}{\mathrm{~mol}}+1145 \frac{\mathrm{~kJ}}{\mathrm{~mol}}+2\left(-349 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)+U_{\mathrm{CaCl}_{2}(s)} \\
U_{\mathrm{CaCl}_{2}(s)} & =-2226 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{aligned}
$$

(b) Would you expect the lattice energy of MgCl_{2} to larger or smaller than that of CaCl_{2} ?
$U_{\mathrm{CaCl}_{2}(s)}<U_{\mathrm{MgCl}_{2}(s)}$
3. The osmotic pressure of a $0.0100 \mathrm{M} \mathrm{CaCl}_{2}$ solution at 298 K is 0.605 atm . How many moles of ions are dissociated for every mole of CaCl_{2} dissolved in solution.

$$
\begin{aligned}
\Pi & =i M R T \\
0.605 \mathrm{~atm} & =i \times(0.0100 \mathrm{M})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K}) \\
i & =2.47
\end{aligned}
$$

2.47 mol ions are dissociated for every 1 mole of CaCl_{2} dissolved.
4. The wasp, Bracon cephi, survives in sub-freezing climates by elevating levels of glycerol, a compound composed of only C, H, and O atoms, in their blood as high as $5.00 \mathrm{~mol} / \mathrm{kg}$ to depress the freezing point of blood. If typical blood ($K_{\mathrm{f}}=1.853^{\circ} \mathrm{C} / \mathrm{m}$) freezes at $-1.50^{\circ} \mathrm{C}$, what is freezing point of wasp blood?

Determine the freezing point depression $\left(\Delta \mathrm{T}_{\mathrm{f}}\right)$. Glycerol is a molecular compound, so $i=1$.

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{f}} & =i \mathrm{~K}_{\mathrm{f}} m \\
& =(1)\left(1.853 \frac{{ }^{\circ} \mathrm{C}}{m}\right)(5.00 \mathrm{~m}) \\
\Delta \mathrm{T}_{\mathrm{f}} & =9.26_{5}{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Now, calculate the new freezing point:

$$
\mathrm{T}_{\mathrm{f}, \text { wasp }}=-1.50^{\circ} \mathrm{C}-9.26_{5}{ }^{\circ} \mathrm{C}=-10.76^{\circ} \mathrm{C}
$$

