1. Lithium can exist in either body-centered cubic (*bcc*) or face-centered cubic (*fcc*) packing. Do you expect the density of *fcc* lithium to be greater, the same, or less than *bcc* lithium?

Explain your answer.

2. Drawn below is the lattice structure for a lithium oxide compound, where the open circles are oxide anions and the gray-filled circles are the lithium cations.

(b) What is the occupancy of the holes in the oxide lattice? Circle one answer.

Half of the	Half of the	All of the	All of the
tetrahedral holes	octahedral holes	tetrahedral holes	octahedral holes

3. Consider the following unit cells of iron-carbon alloys. The white circles represent iron atoms and the gray circles represent carbon atoms.

- (a) Which of the unit cell(s) is an interstitial alloy of *fcc* iron?
- (b) Which unit cell(s) could be substitutional alloys?
- (c) Determine the Fe:C ratio in each unit cell?

4. Consider the following monomers. The **circled atoms** represent where the monomers would link together to form their respective polymers.

(a) Draw the line structure for monomer I.

Draw the addition polymer **I** (arising from monomer **I**) showing 3 repeating units. Draw the addition polymer **I**, but with just the repeating unit and square brackets [].

- (b) Which monomer(s) would form a polymer with an sp^2 -hybridized carbon?
- (c) Which polymer(s) could engage in hydrogen bonding with itself?
- (d) Assuming the monomers form straight-chain polymers, which monomer would you expect to produce the <u>least dense</u> polymer?
- (e) Which monomer(s) would produce a polymer that is <u>least soluble</u> in water?
- (f) Which monomer(s) would produce a polymer via condensation?